Skip to main content

Recombining DNA Damage Repair, Basal Transcription, and Human Syndromes

  • Chapter
Genomic Instability and Immortality in Cancer

Abstract

DNA, the vital carrier of genetic information, is not chemically inert. In the course of time lesions accumulate due to the intrinsic instability of certain chemical bonds. In addition, DNA erodes because of the deleterious effect of numerous exogenous and endogenous genotoxic agents. For instance, the ubiquitous UV component of sunlight induces cyclobutane pyrimidine dimers, 6—4 photoproducts and thymine glycols; X-rays cause various sorts of single strand breaks and the very genotoxic double strand breaks, whereas a wide range of natural and man-made chemicals give rise to many types of DNA adducts, as well as inter- and intra-strand crosslinks (for a review see ref. (5)). Obviously, the corrosion of the double helix interferes with proper functioning, and poses logistic problems for transcription and replication of DNA, which may cause cell death. In addition, DNA lesions frequently give rise to permanent changes in the nucleotide sequence. These mutations can lead to cellular malfunctioning, including carcinogenesis and may contribute to ageing in somatic cells. When occurring in germ cells they may be the cause of inborn genetic defects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aboussekhra, A., M. Biggerstaff, M.K.K. Shivji, J.A. Vilpo, V. Moncollin, V.N. Podust, M. Protic, U. Hubscher, J.-M. Egly and R.D. Wood. 1995. Mammalian DNA nucleotide excision repair reconstituted with purified components. Cell. 80:859–868.

    Article  PubMed  CAS  Google Scholar 

  2. Bardwell, A.J., L. Bardwell, N. Iyer, J.Q. Svejstrup, W.J. Feaver, R.D. Kornberg and E.C. Friedberg. 1994. Yeast nucleotide excision repair proteins rad2 and rad4 interact with RNA polymerase II basal transcription factor b (TFIIH). Mol. Cell. Biol. 14:3569–3576.

    PubMed  CAS  Google Scholar 

  3. Cleaver, J.E. and K.H. Kraemer. 1995. Xeroderma Pigmentosum and Cockayne syndrome, p. In Scriver, C.R., A.L. Beaudet, W.S. Sly, D. Valle (ed.), The metabolic basis of inherited disease Seventh edition. McGraw-Hill Book Co., New York.

    Google Scholar 

  4. Drapkin, R., J.T. Reardon, A. Ansari, J.C. Huang, L. Zawel, K. Ahn, A. Sancar and D. Reinberg. 1994. Dual role of TFIIH in DNA excision repair and in transcription by RNA polymerase II. Nature. 368:769–772.

    Article  PubMed  CAS  Google Scholar 

  5. Friedberg, E.C., G.C. Walker and W. Siede. 1995. DNA repair and mutagenesis. ASM Press, Washington D.C.

    Google Scholar 

  6. Hanawalt, P.C. 1994. Transcription-coupled repair and human disease. Science. 266:1957–1958.

    Article  PubMed  CAS  Google Scholar 

  7. Henning, K.A., L. Li, N. Iyer, L. McDaniel, M.S. Reagan, R. Legerski, R.A. Schultz, M. Stefanini, A.R. ILehmann, L.V. Mayne and E.C. Friedberg. 1995. The Cockayne syndrome group A gene encodes a WD repeat protein that interacts with CSB protein and a subunit of RNA polymerase II TFIIH. Cell. 82:555–564.

    Article  PubMed  CAS  Google Scholar 

  8. Hoeijmakers, J.H.J. 1993. Nucleotide excision repair I: from E.coli to yeast. Trends in Genetics. 9:173–177.

    Article  PubMed  CAS  Google Scholar 

  9. Hoeijmakers, J.H.J. 1993. Nucleotide excision repair II: from yeast to mammals. Trends in Genetics. 9:211–217.

    Article  PubMed  CAS  Google Scholar 

  10. Hoeijmakers, J.H.J. 1995. Nucleotide excision repair: molecular and clinical implications. DNA repair mechanisms. in press.

    Google Scholar 

  11. Hoeijmakers, J.H.J. 1996. Human nucleotide excision repair syndromes: molecular clues to unexpected intricacies. European J. Cancer. 30A: 1921–1921.

    Google Scholar 

  12. Huang, J.C., D.L. Svoboda, J.T. Reardon and A. Sancar. 1992. Human nucleotide excision nuclease removes thymine dimers from DNA by incising the 22nd phosphodiester bond 5’ and the 6th phosphodiester bond 3’ to the photodimer. Proc. Natl. Acad. Sci. USA. 89:3664–3668.

    Article  PubMed  CAS  Google Scholar 

  13. Itin, P.H. and M.R. Pittelkow. 1990. Trichothiodystrophy: review of sulfur-deficient brittle hair syndromes and association with the ectodermal dysplasias. J. of the American Acadamy of Dermatology. 22:705–717.

    Article  CAS  Google Scholar 

  14. Kleijer, W.J., F.A. Beemer and B.W. Boom. 1994. Intermittent hair loss in a child with PIBI(D)S syndrome and trichothiodystrophy with defective DNA repair-xeroderma pigmentosum group D. J. Med. Genet. 52:227–230.

    Article  CAS  Google Scholar 

  15. Masutani, C., K. Sugasawa, J. Yanagisawa, T. Sonoyama, M. Ui, T. Enomoto, K. Takio, K. Tanaka, P.J. van der Spek, D. Bootsma, J.H.J. Hoeijmakers and F. Hanaoka. 1994. Purification and cloning of a nucleotide excision repair complex involving the xeroderma pigmentosum group C protein and a human homolog of yeast RAD23. EMBO J. 13:1831–1843.

    PubMed  CAS  Google Scholar 

  16. Nance, M.A. and S.A. Berry. 1992. Cockayne syndrome: Review of 140 cases. American Journal of Medical Genetics. 42:68–84.

    Article  PubMed  CAS  Google Scholar 

  17. O’Donovan, A., A.A. Davies, J.G. Moggs, S.C. West and R.D. Wood. 1994. XPG endonuclease makes the 3′ incision in human DNA nucleotide excision repair. Nature. 371:432–435.

    Article  PubMed  Google Scholar 

  18. Sancar, A. 1994. Mechanisms of DNA excision repair. Science. 266:1954–1956.

    Article  PubMed  CAS  Google Scholar 

  19. Sancar, A. and M.-S. Tang. 1993. Nucleotide excision repair. Photochemistry and Photobiology. 57:905–921.

    Article  PubMed  CAS  Google Scholar 

  20. Schaeffer, L., R. Roy, S. Humbert, V. Moncollin, W. Vermeulen, J.H.J. Hoeijmakers, P. Chambon and J. Egly. 1993. DNA repair helicase: a component of BTF2 (TFIIH) basic transcription factor. Science. 260:58–63.

    Article  PubMed  CAS  Google Scholar 

  21. Sijbers, A.M., W.L. de Laat, R.R. Ariza, M. Biggerstaff, Y.F. Wei, J.G. Moggs, K.C. Carter, B.K. Shell, E. Evans, M.C. de Jong, S. Rademakers, J. de Rooij, N.G.J. Jaspers, J.H.J. Hoeijmakers and R.D. Wood. 1996. Xeroderma pigmentosum group F caused by a defect in a structures-specific DNA repair endonuclease. Cell. 86:in press.

    Google Scholar 

  22. Svejstrup, J.Q., W.J. Feaver, J. LaPointe and R.D. Kornberg. 1994. RNA polymerase transcription factor IIH holoenzyme from yeast. submitted.

    Google Scholar 

  23. Troelstra, C., A. van Gool, J. de Wit, W. Vermeulen, D. Bootsma and J.H.J. Hoeijmakers. 1992. ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne’s syndrome and preferential repair of active genes. Cell. 71:939–953.

    Article  PubMed  CAS  Google Scholar 

  24. van Houten, B. 1990. Nucleotide excision repair in Escherichia coli. Microbiol. Rev. 54:18–51.

    PubMed  Google Scholar 

  25. Venema, J., L.H.F. Mullenders, A.T. Natarajan, A.A. Van Zeeland and L.V. Mayne. 1990. The genetic defect in Cockayne syndrome is associated with a defect in repair of UV-induced DNA damage in transcriptionally active DNA. Proc. Natl. Acad. Sci. USA. 87:4707–4711.

    Article  PubMed  CAS  Google Scholar 

  26. Vermeulen, W., J. Jaeken, N.G.J. Jaspers, D. Bootsma and J.H.J. Hoeijmakers. 1993. Xeroderma pigmentosum complementation group G associated with Cockayne’s syndrome. Am. J. Human Genet. 53:185–192.

    CAS  Google Scholar 

  27. Vermeulen, W., A.J. van Vuuren, M. Chipoulet, L. Schaeffer, E. Appeldoorn, G. Weeda, N.G.J. Jaspers, A. Priestley, C.F. Arlett, A.R. Lehmann, M. Stefanini, M. Mezzina, A. Sarasin, D. Bootsma, J.-M. Egly and J.H.J. Hoeijmakers. 1994. Three unusual repair deficiencies associated with transcription factor BTF2(TFIIH). Evidence for the existence of a transcription syndrome. Cold Spring Harbor. 59:317–329.

    Article  CAS  Google Scholar 

  28. Wang, Z., S. Buratowski, J.Q. Svejstrup, W.J. Feaver, X. Wu, R.D. Kornberg, T.D. Donahue and E.C. Friedberg. 1995. The yeast TFB1 and SSL1 genes, which encode subunits of transcription factor IIH, are required for nucleotide excision repair and RNA polymerase II transcription. Molecular and Cellular Biology. 15:2288–2293.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hoeijmakers, J.H.J. et al. (1997). Recombining DNA Damage Repair, Basal Transcription, and Human Syndromes. In: Mihich, E., Hartwell, L. (eds) Genomic Instability and Immortality in Cancer. Pezcoller Foundation Symposia, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5365-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5365-6_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7448-0

  • Online ISBN: 978-1-4615-5365-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics