Skip to main content

A Molecular Cytogenetic View of Chromosomal Heterogeneity in Solid Tumors

  • Chapter
Book cover Genomic Instability and Immortality in Cancer

Part of the book series: Pezcoller Foundation Symposia ((PFSO,volume 8))

Abstract

The concept that cancers progress, in large part, through accumulation of multiple genetic abnormalities is generally accepted.1,2,3 The order of progression is best established for colorectal cancer.3 The development of genetic instability is thought to be a key aspect of tumor progression4,5 enabling accumulation of the multiple abnormalities required for a complete metastatic phenotype. Several genetic abnormalities that lead to instability have been identified. These involve genes that code for proteins involved in detection and repair of genetic damage,5 maintenance of telomere length6 and apoptosis.7,8 However, the magnitude and type of damage that is accumulated as a result of these defects is only now beginning to be appreciated. The application of molecular cytogenetic techniques such as fluorescence in situ hybridization (FISH9,10) and comparative genomic hybridization (CGH11) are particularly powerful for the study of damage that results in changes in the structure or number of copies of genomic DNA. FISH allows visualization of specific segments of DNA in single cells and therefore provides information about the variation among cells in the number of copies and the organization of these target sequences. CGH, on the other hand provides a genome-wide overview of changes in relative DNA sequence copy number that occur in the majority of cells of a tumor. Importantly, CGH maps changes onto a normal representation of the genome so that they are easily interpreted. These techniques are particularly useful for studies of DNA sequence copy number changes in spontaneous solid tumors since they do not require cell culture and can be applied to archived tumor material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.R. Fearon, B. Vogelstein. A genetic model for colorectal tumorigenesis. Cell 61:759–767 (1990)

    Article  PubMed  CAS  Google Scholar 

  2. E.R. Fearon. Molecular abnormalities in colon and rectal cancer. In: The Molecular Basis of Cancer (Eds. J. Mendelsohn, P. Howley, M. Israel, L. Liotta). W.B. Saunders and Co. Philadelphia, PA (1995)

    Google Scholar 

  3. H.E. Varmus, L.A. Godley, S. Roy, I.C. Taylor, L. Yuschenkoff, Y.-P. Shi, D. Pinkel, J.W. Gray, R. Pyle, C.M. Aldaz, et al. Defining the steps in a multistep mouse model for mammary carcinogenesis. Cold Spring Harbor Symposia on Quantitative Biology, 59:491–499 (1994)

    Article  PubMed  CAS  Google Scholar 

  4. T.D. Tlsty, A. White, E. Livanos, M. Sage, H. Roelofs, A. Briot, B. Poulose, Genomic integrity and the genetics of cancer. Cold Spring Harbor Symposia on Quantitative Biology. 59:265–275 (1994)

    Article  PubMed  CAS  Google Scholar 

  5. R. Fishel, R.D. Kolodner. Identification of mismatch repair genes and their role in the development of cancer. Current Opinion in Genetics and Development, 5:382–395 (1995)

    Article  PubMed  CAS  Google Scholar 

  6. C.W. Greider, E.H. Blackburn. Telomeres, telomerase and cancer. Scientific American, 274:92–97 (1996)

    Article  PubMed  CAS  Google Scholar 

  7. C.J. Leonard, C.E. Canman, M.B. Kastan. The role of p53 in cell-cycle control and apoptosis: implications for cancer. Important Advances in Oncology,: 33–42 (1995)

    Google Scholar 

  8. S.J. Martin, D.R. Green. Apoptosis and cancer: the failure of controls on cell death and cell survival. Critical Reviews in Oncology/Hematology, 18:137–153 (1995)

    Article  PubMed  CAS  Google Scholar 

  9. D. Pinkel, J. Landegent, C. Collins, J. Fuscoe, R. Segraves, J. Lucas, J.W. Gray. Fluorescence in situ hybridization with human chromosome-specific: detection of trisomy 21 and translocations of chromosome 4. Proceedings of the National Academy of Sciences of the United States of America, 85:9138–9142 (1988)

    CAS  Google Scholar 

  10. P. Lichter, T. Cremer, J. Borden, L. Manuelidis, D.C. Ward. Delineation of individual human chromosomes in metaphase and interphase by in situ suppression hybridization using recombinant DNA libraries. Human Genetics, 80:224–234 (188)

    Google Scholar 

  11. A. Kallioniemi, O.-P. Kallioniemi, D. Sudar, D. Rutovitz, J.W. Gray, F. Waldman, D. Pinkel. Comparative genomic hybridization for molecular cytogenetic analysis of tumors. Science, 258:818–821 (1992)

    Article  PubMed  CAS  Google Scholar 

  12. M. Balazs, K. Matsumura, D. Moore, D. Pinkel, J.W. Gray, F.M. Waldman. Karyotypic heterogeneity and its relation to labeling index in interphase tumor cells. Cytometry, 20:62–73 (1995)

    Article  PubMed  CAS  Google Scholar 

  13. W. Lee, K. Han, C.P. Harris, L. Meisner. Detection of aneuploidy and possible deletion in paraffin-embedded rhabdomyosarcoma cells with FISH. Cancer Genetics and Cytogenetics, 68:99–103 (1993)

    Article  PubMed  CAS  Google Scholar 

  14. C.T. Thompson, P.E. LeBoit, P.M. Nederlof, J.W. Gray. Thick section fluorescence in situ hybridization (FISH). on formalin-fixed, paraffin-embedded archival tissue provides a histogenetic profile. Am. J. Pathology., 144:237–243 (1994)

    CAS  Google Scholar 

  15. P.M. Nederlof, D. Robinson, R. Abuknesha, J. Wiegant, A.H. Hopman, H.J. Tanke, A.K. Raap. Three-color fluorescence in situ hybridization for the simultaneous detection of multiple nucleic acid sequences. Cytometry, 10:20–27(1989)

    Article  PubMed  CAS  Google Scholar 

  16. M.R. Speicher, S.G. Ballard, D.C. Ward. Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nature Genetics, 12:368–375 (1966)

    Article  Google Scholar 

  17. J. Isola, S. DeVries, L. Chu. S. Ghazvini, F. Waldman. Analysis of changes in DNA sequence copy number by comparative genomic hybridization in archival paraffin-embedded tumor samples. American Journal of Pathology, 145:1301–1308 (1994)

    PubMed  CAS  Google Scholar 

  18. R.N. Wiltshire, P. Duray, M.L. Bittner, T. Visakorpi, et al. Direct visualization of the clonal progression of primary cutaneous melanoma — application of tissue microdissection and comparative genomic hybridization. Cancer Research 55:3954–3957 (1995)

    PubMed  CAS  Google Scholar 

  19. J. Piper, D. Rutovitz, D. Sudar, A. Kallioniemi, O.-P. Kallioniemi, F.M. Waldman, J.W. Gray, D. Pinkel. Computer image analysis of comparative genomic

    Google Scholar 

  20. H. Iwabuchi, M. Sakamoto, H. Sakunaga, Y.Y. Ma, M.L. Carcangiu, D. Pinkel,. T. Yang-Feng, J.W. Gray. Genetic analysis of benign, low-grade, and high-grade ovarian tumors. Cancer Research, 55:6172–6180 (1995)

    PubMed  CAS  Google Scholar 

  21. J. Isola, O.-P. Kallioniemi, L. Chu, S. Fuqua, S. Hilsenbeck, C.K. Osborne, F.M. Waldman. Genetic aberrations detected by comparative genomic hybridization predict outsome in node-negative breast cancer. American Journal of Pathology 147:905–911 (1995)

    PubMed  CAS  Google Scholar 

  22. H. Moch, J. Presti, G. Sauter, N. Buchholz, P. Jordan, M. Mihatsch, F.M. Waldman. Genetic aberrations detected by comparative genomic hybridization are associated with clinical outcome in renal cell carcinoma. Cancer Research, 56:27–30 (1996)

    PubMed  CAS  Google Scholar 

  23. P. O’Copnnell, V. Pekkel, S. Fuqua, C.K. Osborne, D.C. Allred. Molecular genetic studies of early breast cancer evolution. Breast Cancer Research and Treatment 32:5–12 (1994)

    Article  Google Scholar 

  24. D.S. Murphy, S. Hoare, J. Going, E. Mallon, W. George, S. Kaye, R. Brown, D. Black, W. Keith. Characterization of extensive genetic alterations in ductal carcinoma in situ by fluorescence in situ hybridization and molecular analysis. Journal of the National Cancer Institute, 87:1694–1704 (1995)

    Article  PubMed  CAS  Google Scholar 

  25. J. Schlegel, G. Stumm, H. Scherthan, T. Bocker, H. Zirngibl, J. Ruschoff, F. Hofstadter. Comparative genomic in situ hybridization of colon carcinomas with replication error. Cancer Research 55:6002–6005 (1995)

    PubMed  CAS  Google Scholar 

  26. L.A. Donehower, L.A. Godley, C.M. Aldaz, R. Pyle, Y.-P. Shi, D. Pinkel, J.W. Gray, A. Bradley, D. Medina, H.E. Varmus. Deficiency of p53 accelerates mammary tumorigenesis in Wnt-1 transgenic and promotes chromosomal instability. Genes and Development, 9:882–895 (1995)

    Article  PubMed  CAS  Google Scholar 

  27. M.L. Cher, D. MacGrogan, R. Bookstein, J. Brown, R.B. Jenkins, R.H. Jensen. Comparative genomic hybridization, allelic imbalance, and fluorescence in hybridization on chromosome 8 in prostate cancer. Genes, Chromosomes and Cancer, 1994 Nov, 11(3): 153–162 (1994)

    Article  CAS  Google Scholar 

  28. M.M. Tanner, M. Tirkkonen, A. Kallioniemi, C. Collins, T. Stokke, R. Karhu, D. Kowbel, F. Shadravan, M. Hintz, W.-L. Kuo, et al. Increased copy number at 20q13 in breast cancer: defining the critical and exclusion of candidate genes. Cancer Research, 54:4257–4260 (1994)

    PubMed  CAS  Google Scholar 

  29. C. A. Reznikoff, C. Belair, E. Savelieva, Y. Zhai, K. Pfeifer, T. Yeager, K. Thompson, S. DeVries, C. Bindley, M. Newton, G. Sekhon, F. Waldman. Long-term genome stability and minimal genotypic and pheno-typic alterations HPV16 E7-but not E6-, immortalized human uroepithelial cells. Genes and Development, 8:2227–2240 (1994)

    Article  PubMed  CAS  Google Scholar 

  30. T. Stokke, C. Collins, W.-L. Kuo, D. Kowbel, F. Shadravan, M. Tanner, A. Kallioniemi, O.-P. Kallioniemi, D. Pinkel, L. Deaven, J.W. Gray. A physical map of chromosome 20 established using fluorescence in situ and digital image analysis. Genomics, 26:134–137 (1995)

    Article  PubMed  CAS  Google Scholar 

  31. M.M. Tanner, M. Tirkkonen, A. Kallioniemi, K. Holli et al. Amplification of chromosomal region 20q13 in invasive breast cancer — Implications. Clinical Cancer Research, 12:1455–1461 (1995)

    Google Scholar 

  32. M. Tanner, M. Tirkkonen, A. Kallioniemi, J. Isola, T. Kuukasjarvi, C. Collins, D. Kowbel, X.-Y. Guan, J. Trent, J. Gray, P. Meltzer, O.-P. Kallioniemi. Independent amplification and frequent co-amplification of three non-syntenic regions of the long arm of chromosome 20 in human breast cancer. Cancer Research (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gray, J.W., Chin, K., Waldman, F. (1997). A Molecular Cytogenetic View of Chromosomal Heterogeneity in Solid Tumors. In: Mihich, E., Hartwell, L. (eds) Genomic Instability and Immortality in Cancer. Pezcoller Foundation Symposia, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5365-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5365-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7448-0

  • Online ISBN: 978-1-4615-5365-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics