Skip to main content

Cell Cycle Regulatory Proteins as Targets of Oncogenic Events

  • Chapter
Genomic Instability and Immortality in Cancer

Part of the book series: Pezcoller Foundation Symposia ((PFSO,volume 8))

  • 75 Accesses

Abstract

Many years have passed since the fundamental discoveries of Paul Nurse and Lee Hartwell described the characteristic phenotypes of yeast cell division mutants and the isolation of the first cell cycle regulatory genes (Hartwell et al., 1974; Nurse, 1975). Using very different approaches a large number of investigations have now allowed us to understand how the molecular engine that drives a cell through the division cycle works. At the core of the system are a family of serine/threonine kinases, the cyclin-dependent kinases (Cdks) whose periodic activation leads to the initiation of each cell cycle transition. Their name stems from the fact that they require an associated protein subunit, a cyclin (Evans et al., 1983; Rosenthal et al., 1983) for activity. This biochemical mechanism has been well conserved throughout the evolution, but while in yeast a single Cdk regulates cell cycle progression upon association with distinct cyclins, in higher eukaryotes a family of structurally related proteins exists, each responsible for triggering a certain transition in the division cycle. The various Cdks can associate with different cyclin subunits and form complexes that are activated at distinct times in the cell cycle. In mammals, during the G1 phase, two major protein complexes are activated, the cyclin D and cyclin E associated kinases, while cyclin A complexes are functional throughout S-phase and G2 and cyclin B/Cdc2 is activated at the G2/M-phase transition (see review by Morgan, 1995).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baratte, B., Meiyer, L., Galaktinov, K., and Beach, D. (1992). Screening for antimitotic compounds using the cdc25 tyrosine phosphatase, an activator of the mitosis-inducing p34cdc2/cyclinB protein kinase. Anticancer Research 12.

    Google Scholar 

  • Buckley, M. F., Sweeney, K. J. E., Hamilton, J. A., Sini, R. L., Manning, D. L., Nicholson, R. I., de Fazio, A., Watts, C. K. W., A., M. E., and Sutherland, R. L. (1993). Expression and amplification of cyclin genes in human breast cancer. Oncogene 8, 2127–2133.

    PubMed  CAS  Google Scholar 

  • Ciechanover, A. (1994). The Ubiquitin-Proteasome Proteolytic Pathway. Cell 79, 13–21.

    Article  PubMed  CAS  Google Scholar 

  • Ciechanover, A., DiGiuseppe, J., Bercovich, B., Orian, A., Richter, J., Schwartz, A., and Brodeur, G. (1991). Degradation of nuclear oncoproteins by the ubiquitin system in vitro. Proc. Natl. Acad. Sci. USA 88, 139–143.

    Article  CAS  Google Scholar 

  • Dai, K., Kobayashi, R., and Beach, D. (1996). Physical interaction of mammalian CDC37 with CDK4. J. Biol. Chem. 271, 22030–22034.

    Article  PubMed  CAS  Google Scholar 

  • Damagnez, V., Makela, T. P., and Cottarel, G. (1995). Schizosaccharomyces pombe Mop1-Mcs2 is related to mammalian CAK. Embo J. 14, 6164–6172.

    PubMed  CAS  Google Scholar 

  • Deshaies, R. J. (1995). Make it or break it: the role of ubiquitin-dependent proteolysis in cell regulation. Trends in Cell Biol. 10, 428–434.

    Article  Google Scholar 

  • Dietrich, C., Bartsch, T., Schanz, F., Oesch, F., and Wieser, R. J. (1996). p53-dependent cell cycle arrest induced by N-acetyl-L-leucinyl-L-leucinyl-L-norleucinal in platelet-derived growth factor-stimulated human fibroblasts. Proc. Natl. Acad. Sci. USA 93, 10815–10819.

    Article  PubMed  CAS  Google Scholar 

  • Draetta, G., Brizuela, L., Potashkin, J., and Beach, D. (1987). Identification of p34 and p13, human homologs of the cell cycle regulators of fission yeast encoded by cdc2+ and suc1+. Cell 50, 319–325.

    Article  PubMed  CAS  Google Scholar 

  • Draetta, G., and Pagano, M. (1996). Cell cycle control and cancer. In Topics in Biology, W. W. Wong, ed.: Academic Press), pp. 241–248.

    Google Scholar 

  • Draetta, G. F., and Eckstein, J. W. (1996). Cdc25 phosphatases in cell proliferation. Biochim. Byophys. Acta in press.

    Google Scholar 

  • Elledge, S., and Harper, W. (1994). Cdk inhibitors: on the threshold of checkpoints and development. Curr. Opin. Cell Biol. 6, 847–852.

    Article  PubMed  CAS  Google Scholar 

  • Espinoza, F. E., Farrell, A., Erdjument-Bromage, H., Tempts, P., and Morgan, D. O. (1996). A cyclin-dependent ki-nase-activating kinase in budding yeast unrelated to vertebrate CAK. Science 273, 1714–1716.

    Article  PubMed  CAS  Google Scholar 

  • Evans, T., Rosenthal, E. T., Youngblom, J., Distel, D., and Hunt, T. (1983). Cyclin: A protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 33, 389–396.

    Article  PubMed  CAS  Google Scholar 

  • Firpo, E. J., Koff, A., Solomon, M., and Roberts, J. (1994). Inactivation of a Cdk2 inhibitor during Interleuki 2-in-duced proliferation of human T lymphocytes. Mol. Cell Biol. 14, 4889–4901.

    PubMed  CAS  Google Scholar 

  • Galaktionov, K., and Beach, D. (1991). Specific activation of cdc25 tyrosine phosphatase by B-type cyclins: evidence for multiple roles of mitotic cyclins. Cell 67, 1181–1194.

    Article  PubMed  CAS  Google Scholar 

  • Galaktionov, K., Chen, X., and Beach, D. (1996). Cdc25 cell-cycle phosphatase as a target of c-myc. Nature 382, 511–517.

    Article  PubMed  CAS  Google Scholar 

  • Galaktionov, K., Jessus, C., and Beach, D. (1995). Raf1 interaction with cdc25 phosphatase ties mitogenic signal transduction to cell cycle activation. Genes & Develop. 9, 1046–1058.

    Article  CAS  Google Scholar 

  • Galaktionov, K., Lee, A., Eckstein, J., Draetta, G., Meckler, J., Loda, M., and Beach, D. (1995). Cdc25 phosphatases as potential human oncogenes. Science 269, 1575–1577.

    Article  PubMed  CAS  Google Scholar 

  • Gillett, C., Fanti, V., Smith, R., Fisher, C., Bartek, J., Dickson, C., Barnes, D., and Peters, G. (1994). Amplification and overexpression of cyclin D1 in breast cancer detected by immunohistochemical staining. Cancer Res 54, 1812–1817.

    PubMed  CAS  Google Scholar 

  • Glotzer, M., Murray, A., and Kirschner, M. (1991). Cyclin is degraded by the ubiquitin pathway. Nature 349, 132–138.

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb, T. M., and Oren, M. (1996). p53 in growth control and neoplasia. Biochim. Biophys. Acta, Gene Struct. Expr. 1287, 77–102.

    PubMed  Google Scholar 

  • Hartwell, L. H., Culotti, J., Pringle, J. R., and Reid, B. J. (1974). Genetic control of the cell division cycle in yeast. Science 183, 46–51.

    Article  PubMed  CAS  Google Scholar 

  • Hengst, L., Dulic, V., Slingerland, J., Lees, E., and Reed, S. (1994). A cell cycle regulated inhibitor of cyclin-dependent kinases. Proc. Natl. Acad. Sci. USA 91, 5291–5295.

    Article  PubMed  CAS  Google Scholar 

  • Hershko, A., Ganoth, D., Sudakin, V., Dahan, A., Cohen, L., Luca, F., Ruderman, J., and Eytan, E. (1994). Components of a System That Ligates Cyclin to Ubiquitin and Their Regulation by the Protein Kinase cdc2. J. Biol. Chem. 269, 4940–4946.

    PubMed  CAS  Google Scholar 

  • Hochstrasser, M. (1996). Protein degradation or regulation: Ub the judge. Cell 84, 813–815.

    Article  PubMed  CAS  Google Scholar 

  • Hochstrasser, M. (1995). Ubiquitin, proteasomes, and the regulation of intracellular protein degradation. Current Opinion in Cell Biology 7, 215–223.

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann, I., Clarke, P. R., Marcote, M. J., Karsenti, E., and Draetta., G. (1993). Phosphorylation and activation of human cdc25-C by cdc2-cyclin B and its involvement in the self-amplification of MPF at mitosis. EMBO J. 12, 53–63.

    PubMed  CAS  Google Scholar 

  • Hoffmann, I., Draetta, G., and Karsenti, E. (1994). Activation of the phosphatase activity of human cdc25A by a cdk2-cyclin E dependent phosphorylation at the G1/S transition. Embo J 13, 4302–4310.

    PubMed  CAS  Google Scholar 

  • Horiguchi, T., Nishi, K., Hakoda, S., Tanida, S., Nagata, A., and Okayama, H. (1994). Dnacin Al and dnacin B1 are antitumor antibiotics that inhibit cdc25B phosphatase activity. Biochem Pharmacol 48, 2139–2141.

    Article  PubMed  CAS  Google Scholar 

  • Huibregtse, J., Scheffner, M., Beaudenon, S., and Howley, P. (1995). A family of proteins structurally and functionally related to E6-AP ubiquitin-protein ligase. Proc. Natl. Acad. Sci. USA 92, 2563–2567.

    Article  PubMed  CAS  Google Scholar 

  • Huibregtse, J., Scheffner, M., and Howley, P. (1991). A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. EMBO J. 10, 4129–4135.

    PubMed  CAS  Google Scholar 

  • Huibregtse, J., Scheffner, M., and Howley, P. (1993). Cloning and Expression of the cDNA for E6-AP, a Protein That Mediates the Interaction of the Human Papillomavirus E6 Oncoprotein with p53. Mol. Cell. Biol. 13, 775–784.

    PubMed  CAS  Google Scholar 

  • Isaksson, A., Musti, A. M., and Bohmann, D. (1996). Ubiquitin in signal transduction and cell transformation. Bio-chim. Byophis. Acta 1288, F21–F29.

    Google Scholar 

  • Jackson, P. K. (1996). Cull and destroy. Curr. Biol. 6, 1209–1212.

    Article  PubMed  CAS  Google Scholar 

  • Jentsch, S., and Schlenker, S. (1995). Selective protein degradation: a journey’s end within the proteasome. Cell 82, 881–884.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, W., Kahan, S., Tornita, N., Zhang, Y., Lu, S., and Weinstein, B. (1992). Amplification and expression of the human cyclin D gene in esophageal cancer. Cancer Research 52, 2980–2983.

    PubMed  CAS  Google Scholar 

  • Jinno, S., Suto, K., Nagata, A., Igarashi, M., Kanaoka, Y., Nojima, H., and Okayama, H. (1994). Cdc25A is a novel phosphatase functioning early in the cell cycle. Embo J 13, 1549–1556.

    PubMed  CAS  Google Scholar 

  • Jinno, S., Suto, K., Nagata, A., Igarashi, M., Kanaoka, Y., Nojima, H., and Okayama, H. (1994). Cdc25A is a novel phosphatase functioning early in the cell cycle. EMBO J. 13, 1549–1556.

    PubMed  CAS  Google Scholar 

  • Kaldis, P., Sutton, A., and Solomon, M. J. (1996). The Cdk-activating kinase (CAK) from budding yeast. Cell 86, 553–564.

    Article  PubMed  CAS  Google Scholar 

  • Karp, J. E., and Broder, S. (1995). Molecular foundations of cancer: new targets for intervention. Nature Medicine 1, 309–320.

    Article  PubMed  CAS  Google Scholar 

  • King, R., Peters, J., Tugendreich, S., Rolfe, M., Hieter, P., and Kirschner, M. (1995). A 20S complex containing Cdc27 and Cdc16 catalyzes the mitosis-specific conjugation of ubiquitin to Cyclin B. Cell 81, 279–288.

    Article  PubMed  CAS  Google Scholar 

  • Koff, A., Cross, F., Fisher, A., Schumacher, J., Leguellec, K., Philippe, M., and Roberts, J. M. (1991). Human cyclin E, a new cyclin that interacts with two members of the CDC2 gene family. Cell 66, 1217–1228.

    Article  PubMed  CAS  Google Scholar 

  • Korsmeyer, S. J. (1992). Chromosomal translocations in lymphoid malignancies reveal novel proto-oncogenes. Annu Rev Immunol 10, 785–807.

    Article  PubMed  CAS  Google Scholar 

  • Lammie, G., Fanti, V., Smith, R., Schuuring, E., Brookes, S., Michalides, R., Dickson, C., Arnold, A., and Peters, G. (1991). D11S287, a putative oncogene on chromosome 11q13, is amplified and expressed in squamous cell and mammary carcinimas and linked to BCL-1. Oncogene 6, 439–444.

    PubMed  CAS  Google Scholar 

  • Lamphere, L., Fiore, F., Xu, X., Brizuela, L., Keezer, S., Sardet, C., Draetta, G. F., and Gyuris, J. (1996). Interaction between Cdc37 and Cdk4 in human cells. Oncogene submitted.

    Google Scholar 

  • Lebwohl, D. E., Muise-Helmericks, R., Sepp-Lorenzino, L., Serve, S., Timaul, M., Bol, R., Borgen, P., and Rosen, N. (1994). A truncated cyclin D1 gene encodes a stable mRNA in a human breast cancer cell line. Oncogene 9, 1925–1929.

    PubMed  CAS  Google Scholar 

  • Lew, D. J., Dulic, V., and Reed, S. I. (1991). Isolation of three novel human cyclins by rescue of Gl cyclin (cln) function in yeast. Cell 66, 1197–1206.

    Article  PubMed  CAS  Google Scholar 

  • Loda, M., Cukon, B., Tarn, S., Lavin, P., Fiorentino, M., Draetta, G., Jessup, J., and Pagano, M. (1996). Increased proteasome-dependent degradation of the cyclin-dependent kinase inhibitor p27 in aggressive colorectal carcinomas. submitted.

    Google Scholar 

  • Maki, C., Huibregtse, J., and Howley, P. (1996). In vivo ubiquitination targets wild-type p53 for degradation by the proteasome. Cancer Res. in press.

    Google Scholar 

  • Matsushime, H., Roussel, M., Ashmun, R., and Sherr, C. J. (1991). Colony-stimulating Factor 1 regulates novel cyclins during the Gl phase of the cell cycle. Cell 65, 701–713.

    Article  PubMed  CAS  Google Scholar 

  • Millar, J., McGowan, C. H., Lenaers, G., Jones, R., and Russell, P. (1991). p80cdc25 mitotic inducer is the tyrosine phosphatase that activates p34cdc2 kinase in fission yeast. EMBO J. 10, 4301–4309.

    PubMed  CAS  Google Scholar 

  • Morgan, D. O. (1995). Principles of CDK regulation. Nature 374, 131–134.

    Article  PubMed  CAS  Google Scholar 

  • Motokura, T., Bloom, T., Kim, Y. G., Jueppner, H., Ruderman, J., Kronenberg, H., and Arnold, A. (1991). A novel cyclin encoded by a bell-linked candidate oncogene. Nature 350, 512–515.

    Article  PubMed  CAS  Google Scholar 

  • Nagata, A., Igarashi, M., Jinno, S., Suto, K., and Okayama, H. (1991). An additional homolog of the fission yeast cdc25 gene occurs in humans and is highly expressed in some cancer cells. New Biol. 3, 959–967.

    PubMed  CAS  Google Scholar 

  • Nefsky, B., and Beach, D. (1996). Publ acts as an E6-AP-like protein ubiquitiin ligase in the degradation of cdc25. Embo J. 15, 1301–1312.

    PubMed  CAS  Google Scholar 

  • Nishizawa, M., Okazaki, K., Furuno, N., Watanabe, N., and Sagata, N. (1992). The’ second-codon rule’ and auto-phosphorylation govern the stability and activity of Mos during the meiotic cell cycle in Xenopus oocytes. Embo J 11, 2433–2446.

    PubMed  CAS  Google Scholar 

  • Nourse, J., Firpo, E., Flanagan, M., Coats, S., Polyak, C., Lee, M., Massague, J., Crabtree, G., and Roberts, J. (1994). Interleukin-2-mediated elimination of p27Kipl cyclin-dependent kinase inhibitor prevented by ra-pamycin. Nature 372, 570–573.

    Article  PubMed  CAS  Google Scholar 

  • Nurse, P. (1975). Genetic control of cell size at division in yeast. Nature 256, 547–551.

    Article  PubMed  CAS  Google Scholar 

  • Orian, A., Whitedside, S., Isral, A., Stancovski, I., Schwartz, A., and Ciechanover, A. (1995). Ubiquitin-mediated processingof NF-kB transcreptional activator precursor p105. J. of Biol. Chem. 270, 21707–21714.

    Article  CAS  Google Scholar 

  • Pagano, M., Tarn, S. W., Theodoras, A. M., Romero-Beer, P., Del Sal, G., Chau, V., Yew, R., Draetta, G., and Rolfe, M. (1995). Role of the Ubiquitin-Proteasome pathway in regulating aboundance of the Cyclin-de-pendent kinase inhibitor p27. Science 269, 682–685.

    Article  PubMed  CAS  Google Scholar 

  • Pagano, M., Tarn, S. W., Theodoras, A. M., Romero-Beer, P., Del Sal, G., Chau, V., Yew, R., Draetta, G., and Rolfe, M. (1995). Role of the Ubiquitin-Proteasome pathway in regulating abundance of the Cyclin-de-pendent kinase inhibitor p27. Science 269, 682–685.

    Article  PubMed  CAS  Google Scholar 

  • Palombella, V., Rando, O., Goldberg, A., and Maniatis, T. (1994). The Ubiquitin-Proteasome Pathway Is Required for Processing the NF-κB1 Precursor Protein and the Activation of NF-kB. Cell 78, 773–785.

    Article  PubMed  CAS  Google Scholar 

  • Polyak, K., Kato, M., Solomon, M. J., Sherr, C. J., Massague, J., Roberts, J. M., and Koff, A. (1994). p27Kip1and Cyclin D-Cdk4 are interacting regulators of Cdk2, and link TGF-β and contact inhibition to cell cycle arrest. Genes & Dev. 8, 9–22.

    Article  CAS  Google Scholar 

  • Rolfe, M., Romero, P., Glass, S., Eckstein, J., Berdo, I., Theodoras, A., Pagano, M., and Draetta, G. (1995). Re-constitution of p53-ubiquitinylation reaction from purified components: the role of human UBC4 and E6AP. Proc. Natl. Acad. Sci. USA 92, 3264–3268.

    Article  PubMed  CAS  Google Scholar 

  • Rolfe, M., Romero, P., Glass, S., Eckstein, J., Berdo, I., Theodoras, A., Pagano, M., and Draetta, G. (1995). Re-constitution of p53-ubiquitinylation reaction from purified components: the role of human UBC4 and E6AP. Proc. Natl. Acad. Sci. USA 92, 3264–3268.

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal, E. T., Tansey, T. R., and Ruderman, J. V. (1983). Sequence-specific adenylations and deadenylations accompany changes in the translation of maternal messenger RNA after fertilization of Spisula oocytes. J. Mol. Biol. 166, 309–327.

    Article  PubMed  CAS  Google Scholar 

  • Russell, P., Moreno, S., and Reed, S. I. (1989). Conservation of mitotic controls in fission and budding yeasts. Cell 57, 295–303.

    Article  PubMed  CAS  Google Scholar 

  • Sadhu, K., Reed, S. I., Richardson, H., and Russell, P. (1990). Human homolog of fission yeast cdc25 is predominantly expressed in G1. Proc. Natl. Acad. Sci. USA 87, 5139–5143.

    Article  PubMed  CAS  Google Scholar 

  • Schefmer, M., Huibregtse, J., and Howley, P. (1994). Identification of a human ubiquitin-conjugating enzyme that mediates the E6-AP-dependent ubiquitination of p53. Proc. Natl. Acad. Sci. USA 91, 8797–8801.

    Article  Google Scholar 

  • Schefmer, M., Nuber, U., and Huibregtse, J. (1995). Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature 373, 81–83.

    Article  Google Scholar 

  • Scheffner, M., Werness, B., Huibregtse, J., Levine, A., and Howley, P. (1990). The E6 Oncoprotein Encoded by Human Papillomavirus Types 16 and 18 Promotes the Degradation of p53. Cell 63, 1129–1136.

    Article  PubMed  CAS  Google Scholar 

  • Scherer, D., Brockman, J., Chen, Z., Maniatis, T., and Ballard, D. (1995). Signal-induced degradation of IkBa requires site-specific ubiquitination. Proc. Natl. Acad. Sci. USA 92, 11259–11263.

    Article  PubMed  CAS  Google Scholar 

  • Sherr, C. (1994). Gl phase progression: cycling on cue. Cell 79, 551–555.

    Article  PubMed  CAS  Google Scholar 

  • Sherr, C., and Roberts, J. (1995). Inhibitors of mammalian G1 cyclin-dependent kinases. Genes& dev. 9, 1149–1163.

    Article  CAS  Google Scholar 

  • Sicinski, P., Donaher, J. L., Parker, S. B., Li, T., Fazeli, A., Gardner, H., Haslam, S. Z., Bronson, R. T., Elledge, S. J., and Weinberg, R. A. (1995). Cyclin D1 provides a link between development and oncogenesis in the retina and breast. Cell 82, 621–630.

    Article  PubMed  CAS  Google Scholar 

  • Stancovski, I., Gonen, H., Orian, A., Schwartz, A., and Ciechanover, A. (1995). Degradation of the proto-oncogene c-Fos by the ubiquitin proteolytic system in vivo and in vitro: Identification and characterization of the conjugating enzymes. Mol. Cell Biol. 75, 7106–7116.

    Google Scholar 

  • Stepanova, L., Leng, X., Parker, S. B., and Harper, J. W. (1996). Mammalian p50Cdc37 is a protein kinase-target-ing subunit of Hsp90 that binds and stabilizes Cdk4. Genes Dev. 10, 1491–1502.

    Article  PubMed  CAS  Google Scholar 

  • Sudakin, V., Ganoth, D., Dahan, A., Heller, H., Hershko, J., Luca, F., Ruderman, J., and Hershko, A. (1995). The cyclosome, a large complex containing cyclin selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis. Mol. Biol. Cell 6, 185–198.

    PubMed  CAS  Google Scholar 

  • Sutherland, R. L., Hamilton, J. A., Sweeney, K. J., Watts, C. K., and Musgrove, E. A. (1995). Steroidal regulation of cell cycle progression. Ciba Found. Symp. 191, 218–228.

    PubMed  CAS  Google Scholar 

  • Thuret, J. Y., Valay, J. G., Faye, G., and Mann, C. (1996). Civ1 (CAK in vivo), a novel Cdk-activating kinase. Cell 86, 565–576.

    Article  PubMed  CAS  Google Scholar 

  • Treier, M., Staszewski, L., and Bohmann, D. (1994). Ubiquitin-Dependent c-Jun Degradation In Vivo Is Mediated by the δ Domain. Cell 78, 787–798.

    Article  PubMed  CAS  Google Scholar 

  • Wang, T. C., Cardiff, R. D., Zukerberg, L., Lees, E., Arnold, A., and Schmidt, E. V. (1994). Mammary hyperplasia and carcinoma in MMTV-cyclin D1 transgenic mice. Nature 369, 669–671.

    Article  PubMed  CAS  Google Scholar 

  • Weinberg, R. A. (1995). The retinoblastoma protein and cell cycle control. Cell 81, 323–330.

    Article  PubMed  CAS  Google Scholar 

  • Weinstat-Saslow, D., Merino, M. J., Manrow, R. E., Lawrence, J. A., Bluth, R. F., Wittenbel, K. D., Simpson, J. F., Page, D. L., and Steeg, P. S. (1995). Overexpression of cyclin D mRNA distinguishes invasive and in situ breast carcinomas from non-malignant lesions. Nat Med 1, 1257–1260.

    Article  PubMed  CAS  Google Scholar 

  • Xiong, Y., Connolly, T., Futcher, B., and Beach, D. (1991). Human D-type cyclin. Cell 65, 691–699.

    Article  PubMed  CAS  Google Scholar 

  • Xiong, Y., Zhang, H., and Beach, D. (1992). D Type cyclins associate with multiple protein kinases and the DNA replication and repair factor PCNA. Cell 71, 504–514.

    Article  Google Scholar 

  • Xiong, Y., Zhang, H., and Beach, D. (1993). Subunit rearrangement of the cyclin dependent kinases is associated with cellular transformation. Genes & Dev. 7, 1572–1583.

    Article  CAS  Google Scholar 

  • Xu, X., and Burke, S. P. (1996). Roles of active site residues and the NH2-terminal domain in the catalysis and substrate binding of human Cdc25. J. Biol. Chem. 271, 5118–5124.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, H., Hannon, G., and Beach, D. (1994). p21-containing Cyclin kinases exist in both active and inactive states. Genes & Dev. 8, 1750–1758.

    Article  CAS  Google Scholar 

  • Zhang, H., Xiong, Y., and Beach, D. (1993). PCNA and p21 are universal elements of the cell cycle kinase family. Mol. Biol. Cell 4, 897–906.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fiore, F., Draetta, G.F. (1997). Cell Cycle Regulatory Proteins as Targets of Oncogenic Events. In: Mihich, E., Hartwell, L. (eds) Genomic Instability and Immortality in Cancer. Pezcoller Foundation Symposia, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5365-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5365-6_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7448-0

  • Online ISBN: 978-1-4615-5365-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics