Skip to main content

Radiometric Methods for Dating Groundwater

  • Chapter
Nuclear Methods in Mineralogy and Geology
  • 485 Accesses

Abstract

Radiocarbon is produced primarily by cosmic radiation from nitrogen with the nuclear reaction [1–4]: 14N(n,p)14C and decays by β-emission (Emax=158 keV) with a half-life of 5730±40 a [5]. The 14C that is formed in the upper atmosphere will be oxidized to 14CO2. The production rate is between 1.7 and 2.5 atoms/cm2/s [6]. After mixing with atmospheric CO2 (0.03 vol.%), it becomes part of the carbon cycle in the biosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. N. D. Kurie, Phys. Rev. 45, 904 (1934).

    Google Scholar 

  2. T. W. Bonner, W. M. Brubaker, Phys. Rev. 48, 469 (1935).

    Google Scholar 

  3. W. F. Libby: Radiocarbon Dating, The University of Chicago Press, Chicago, 1955.

    Google Scholar 

  4. W. F. Libby: Radioactive Dating and Methods of Low-level Counting, International Atomic Energy Agency, Vienna, 1967.

    Google Scholar 

  5. H. Godwin, Nature 195, 984 (1962).

    Google Scholar 

  6. R. E. Lingenfelter, Rev. Geophys. 1, 35 (1963).

    Google Scholar 

  7. M. A. Geyh, H. Schleicher: Absolute Age Determination, Springer Verlag, Berlin, 1990.

    Google Scholar 

  8. M. Stuiver, H. Polach, Radiocarbon 19 (3), 355 (1977).

    Google Scholar 

  9. K. O. Münnich, Naturwissenschaften 44, 32 (1957).

    Google Scholar 

  10. Instruction for Sampling of Water for C-14 Analysis, IAEA Hydrology Section, 1967.

    Google Scholar 

  11. T. Florkowski, J. Grabczak, T. Kuc, K. Rozanski, Nukleonika 20 (11-12), 1053 (1975).

    Google Scholar 

  12. H. Schoch, K. O. Münnich, In: Methods of Low Level Counting and Spectrometry, IAEA, Vienna, 1981, p. 361.

    Google Scholar 

  13. H. A. Polach, J. J. Stipp, Int. J. Appl. Radiat. and Isotopes 18, 359 (1967).

    Google Scholar 

  14. J. E. Noakes, S. M. Kim, J. J. Stipp, Proc. of the 6th Int. Conf. on Radiocarbon and Tritium Dating, USAAEC, CONF-650652,68(1965).

    Google Scholar 

  15. R. Burleigh, A. D. Hewson, K. J. Matthews, In: Liquid Scintillation Counting 5, Heyden, London, 1977, p. 205.

    Google Scholar 

  16. H. Barker, Nature 172, 631 (1953).

    Google Scholar 

  17. J. E. Noakes, A. F. Isbell, J. J. Stipp, D. W. Hood, Geochim. Cosmochim. Acta 27, 797 (1963).

    Google Scholar 

  18. J. J. Stipp, G. A. Knauer, H. G. Godell, Radiocarbon 8, 46 (1966).

    Google Scholar 

  19. M. A. Tamers, Proc. of the 6th Int. Conf on Radiocarbon and Tritium Dating, USAAEC, CONF-650-652, 53 (1965).

    Google Scholar 

  20. H. A. Polach, J. Gower, I. Fraser, In: Proc. of the 8th Int. 14C Conference, Royal Society of New Zeland, Wellington, 1972, p. 145.

    Google Scholar 

  21. M. A. Tamers, Int. J. Appl. Radiat, and Isotopes 26, 676 (1975).

    Google Scholar 

  22. D. Hood, R. Hatfield, C. Patrick, J. Stipp, M. Tamers, R. Leidl, B. Lyons, H. Polach, S. Robertson, W. Zhou, Radiocarbon 31(3), 254 (1989).

    Google Scholar 

  23. F. A. J. Armstrong, P. M. Williams, J. D. H. Strickland, Nature 211(5048), 481 (1966).

    Google Scholar 

  24. C. B. Purdy, G. Burr, M. Rubin, G. R. Helz, A. C. Mignery, Radiocarbon 34, 654 (1992).

    Google Scholar 

  25. E. M. Murphy, PhD Thesis, University of Arizona, 1987.

    Google Scholar 

  26. E. M. Murphy, S. N. Davis, A. Long, D. J. Donahue, A. J. T. Jull, Nature 337, 153 (1989).

    Google Scholar 

  27. E. M. Murphy, S. N. Davis, A. Long, D. J. Donahue, A. J. T. Jull, Water Resources Research 25, 1893 (1989).

    Google Scholar 

  28. G. A. Klouda, L. A. Currie, D. J. Donahue, A. J. T. Jull, T. H. Zabel, Nuclear Instrunents and Methods B5, 265 (1984).

    Google Scholar 

  29. H. I. DeVries, G. W. Barendsen, Physica 19, 987 (1953).

    Google Scholar 

  30. H. I. DeVries, M. Stuiver, I. U. Olsson, Nuclear Instruments and Methods 5, 111 (1959).

    Google Scholar 

  31. K. O. Münnich: PhD Thesis, University of Heidelberg, Germany, 1957.

    Google Scholar 

  32. P. P. Tans, W. G. Mook, Radiocarbon 21, 22 (1978).

    Google Scholar 

  33. M. Stuiver, S. W. Robinson, I. Yang, In: Radiocarbon Dating, University of California Press, Berkeley/Los Angeles, 1979, p. 202.

    Google Scholar 

  34. D. J. Groeneveld: Thesis, University of Groningen, The Netherlands, 1977.

    Google Scholar 

  35. P. Povinec, J. Szarka, S. Usacev, Nuclear Instruments and Methods 163, 369 (1979).

    Google Scholar 

  36. H. Schoch, M. Bruns, K. O. Münnich, M. Münnich, Radiocarbon 22(2), 442 (1980).

    Google Scholar 

  37. É. Csongor, E. Hertelendi, Nuclear Instruments and Methods B17, 493 (1986).

    Google Scholar 

  38. E. Hertelendi, É. Csongor, L. Záborszky, J. Molnár, J. Gál, M. Győrffi, S. Nagy, Radiocarbon 31(3), 399 (1988).

    Google Scholar 

  39. P. Povinec, Nuclear Instruments and Methods 163, 363 (1979).

    Google Scholar 

  40. W. G. Mook, Radiocarbon 25(2), 475 (1983).

    Google Scholar 

  41. B. Kromer, K.O. Miinnich, In: Radiocarbon After Four Decades. An Interdisciplinary Perspective, Springer-Verlag, New York, 1992, p. 184.

    Google Scholar 

  42. S. Sudár, L. Vas, T. Bíró, Nuclear Instruments and Methods 112, 399 (1973).

    Google Scholar 

  43. T. J. Harris, E. Matheison, Nuclear Instruments and Methods 88, 181 (1970).

    Google Scholar 

  44. T. J. Harris, E. Matheison, Nuclear Instruments and Methods 96, 397 (1971).

    Google Scholar 

  45. H. Oeschger, M. Wahlen, Annual Review of Nuclear Science 25, 423 (1975).

    Google Scholar 

  46. C. A. M. Brenninkmeijer, W. G. Mook, In: Proc of the 9th Int. 14C Conference, University of California Press, Berkley/Los Angeles, 1979, p. 185.

    Google Scholar 

  47. K. Jelen, M. A. Geyh, Radiocarbon 28(2A), 578 (1986).

    Google Scholar 

  48. R. L. Otlet, G. Huxtable, D. C. W. Sanderson, Radiocarbon 28(2A), 603 (1986).

    Google Scholar 

  49. P. Povinec, Nuclear Instruments and Methods 101, 613 (1972).

    Google Scholar 

  50. I. von Broser, H. Kalimann, Zeitschrift für Naturforschung 2(8), 439 (1947).

    Google Scholar 

  51. E. Rapkin, In: The current Status of Liquid Scintillation Counting, Grune and Stratton, New York, 1970, p. 45..

    Google Scholar 

  52. D. L. Horrocks, Int. J. Appl. Radial and Isotopes 36(8), 609 (1985).

    Google Scholar 

  53. F. Schönhofer, T. Henrich, Trace Analysis of Radionuclides by Liquid Scintillation Counting. Report UBS-STS-85-02, Vienna, 1985.

    Google Scholar 

  54. K. Ró¿añski, W. Stichler, P. Schwarz, Nucl. Geophysics 5(3), 365 (1991).

    Google Scholar 

  55. L. Kalihola, In: Liquid Scintillation Counting and Organic Scintillators, Lewis Publishing Inc., Michigan, 1991, p. 495.

    Google Scholar 

  56. N. Roessler, R. J. Valenta, S. van Cauter, In: Liquid Scintillation Counting and Organic Scintillators, Lewis Publishing Inc., Chelsea, Michigan, 1991, p. 501.

    Google Scholar 

  57. G. W. Pearson, Radiocarbon 21(1), 1 (1979).

    Google Scholar 

  58. R. Lieberman, A. A. Moghissi, Int. J. Appl Radiat. and Isotopes 21, 319 (1970).

    Google Scholar 

  59. M. S. Patterson, R. C. Greene, Anal. Chem. 37, 854 (1965).

    Google Scholar 

  60. D. W. Hayes, D. G. Ott, V. N. Kerr, Nucleonics 14(1), 42 (1956).

    Google Scholar 

  61. H. Polach, J. Gower, H. Kojola, A. Heinonen, In: Advances in Scintillation Counting, University of Alberta Press, Alberta, 1983, p. 508.

    Google Scholar 

  62. E. T. Bush, Anal. Chem. 38, 1241 (1966).

    Google Scholar 

  63. A. A. Moghissi, E. W. Bretthauer, E. H. Compton, In: Rapid Methods for Measuring Radiation in the Environment, International Atomic Energy Agency, Vienna, 1971, p. 263.

    Google Scholar 

  64. A. A. Moghissi, M. W. Carter, Anal Chem. 40, 812 (1968).

    Google Scholar 

  65. Ch. J. Passo Jr, G. T. Cook: Handbook of Environmental Liquid Scintillation Spectrometry, Canberra Packard, Meriden, U.S.A., 1995.

    Google Scholar 

  66. R. C. Klein, E. L. Gershey, Health Phys. 59(4), 461 (1990).

    Google Scholar 

  67. P. S. Rummerfield, I. H. Goldman, Int. J. Appl Radial and Isotopes 23, 353 (1972).

    Google Scholar 

  68. R. A. Müller, L. W. Alvarez, W. R. Holley, E. J. Stephenson, Science 196, 521 (1977).

    Google Scholar 

  69. R. A. Müller, In: Proc. of the 1st Conference on Radiocarbon Dating with Accelerators, University of Rochester, 1978, p. 33.

    Google Scholar 

  70. R. A. Müller, E. J. Stephenson, T. J. Mast, Science 201, 347 (1978).

    Google Scholar 

  71. K. H. Purser, R. B. Liebert, A. E. Litherland, R. P. Beukens, H. E. Gove, C. L. Bennett, M. R. Clover, W. E. Sondheim, Revue de Physique Appliquée 12, 1487 (1977).

    Google Scholar 

  72. C. L. Bennett, R. P. Beukens, M. R. Clover, H. E. Gove, R. B. Liebert, A. E. Litherland, K. H. Purser, W. E. Sondheim, Science 198, 508 (1977).

    Google Scholar 

  73. D. E. Nelson, R. G. Korteling, W. R. Scott, Science 198, 507 (1977).

    Google Scholar 

  74. H. R. Andrews, G. C. Ball, R. M. Brown, W. G. Davies, Y. Imahori, J. C. D. Milton, Radiocarbon 22(3), 822 (1980).

    Google Scholar 

  75. C. L. Bennett, R. P. Beukens, M. R. Clover, D. Elmore, H. E. Gove, L. R. Kilius, A. E. Litherland, K. H. Purser, Science 101, 345 (1978).

    Google Scholar 

  76. H. E. Gove, D. Elmore, R. Ferraro, R. P. Beukens, K. H. Chang, L. R. Kilius, H. W. Lee, A. E. Litherland, K. H. Purser, Nuclear Instruments and Methods 168, 425 (1980).

    Google Scholar 

  77. H. E. Gove, B. R. Fulton, D. Elmore, A. E. Litherland, R. P. Beukens, K. H. Purser, H. Naylor, IEEE Transactions in Nuclear Science 26, 1414 (1979).

    Google Scholar 

  78. A. E. Litherland, Annual Reviews of Nuclear and Particle Science 30, 437 (1980).

    Google Scholar 

  79. K. H. Purser, R. B. Liebert, C. J. Russo, Radiocarbon 22(3), 794 (1980).

    Google Scholar 

  80. K. H. Purser, A. E. Litherland, H. E. Gove, Nuclear Instruments and Methods 162, 637(1979).

    Google Scholar 

  81. J. H. Shea, T. W. Conlon, J. Asher, P. M. Read, Radiocarbon 22(3), 830 (1980).

    Google Scholar 

  82. M. Suter, Nuclear Instruments and Methods B52(3,4), 211 (1990).

    Google Scholar 

  83. G. Doucas, E. F. Garmon, H. R. M. Hyder, D. Sinclair, R. E. M. Hedges, N. R. White, Nature 276, 253 (1978).

    Google Scholar 

  84. R. E. M. Hedges, N. R. White, J. O. Wand, E. T. Hall, Radiocarbon 22(3), 816 (1980).

    Google Scholar 

  85. K. H. Purser: US Patent 4037100, 1977.

    Google Scholar 

  86. R. P. Beukens, In: Radiocarbon After Four Decades. An Interdisciplinary Perspective, Springer-Verlag, New York, 1992, p. 230.

    Google Scholar 

  87. R. P. Beukens, Radiocarbon 32(3), 335 (1990).

    Google Scholar 

  88. K. O. Münnich, W. Roether, L. Thilo, In: Isotopes in Hydrology, IAEA, Vienna, 1967, p. 305.

    Google Scholar 

  89. F. J. Pearson, I. Friedman, Water Resour. Res. 6, 1775 (1970).

    Google Scholar 

  90. J. C. Vogel, D. Ehhalt, In: Radioisotopes in Hydrology, IAEA, Vienna, 1963, p. 383.

    Google Scholar 

  91. W. G. Mook, In: Isotope Hydrology, IAEA, Vienna, 1970, p. 163.

    Google Scholar 

  92. F. J. Pearson Jr, B. B. Hanshaw, In: Isotope Hydrology, IAEA, Vienna, 1970, p. 271.

    Google Scholar 

  93. W. G. Mook, In: Handbook of Environmental Isotope Geochemistry, Elsevier Scientific Publishing Company, Amsterdam, 1980, p. 49.

    Google Scholar 

  94. L. Thilo, K. O. Münnich, In: Isotope Hydrology, IAEA, Vienna, 1970, p. 259.

    Google Scholar 

  95. E. Ingerson, F. J. Pearson, In: Recent Researches in the Fields of Hydrosphere, Atmosphere and Nuclear Geochemistry, Maruzen, Tokyo, 1964, p. 263.

    Google Scholar 

  96. M. A. Geyh, In: Proc. of the 8th Int. 14C Conference, Royal Society of New Zeland, Wellington, 1972, p. 369.

    Google Scholar 

  97. W. Salomons, W. G. Mook, Soil Sci.. 122, 15 (1976).

    Google Scholar 

  98. M. A. Tamers, In: Isotopes in Hydrology, IAEA, Vienna, 1967, p. 339.

    Google Scholar 

  99. M. A. Tamers, Geophysical Surveys 2, 217 (1975).

    Google Scholar 

  100. 100 M. A. Tamers, H. W. Scharpenseel, In: Isotope Hydrology, IAEA, Vienna, 1970, p. 241.

    Google Scholar 

  101. J. C. Fontes, J. M. Gamier, Water Resour. Res. 15, 399 (1979).

    Google Scholar 

  102. W. G. Mook, In: Proc. of the 8th Int. 14C Conference, Royal Society of New Zeland, Wellington, 1972, p. 342.

    Google Scholar 

  103. W. G. Mook, In: Interpretation of Environmental Isotope and Hydrochemical Data in Groudwater Hydrology, IAEA, Vienna, 1976, p. 213.

    Google Scholar 

  104. L. Eichinger, Radiocarbon 25, 347 (1983).

    Google Scholar 

  105. P. Deines, D. Langmuir, R. S. Harmon, Geochim. Cosmochim. Acta 38, 1147 (1974).

    Google Scholar 

  106. L. N. Plummer, In: First Canadian/American Conference on Hydrogeology, Practical Applications of Ground Water Geochemistry, National Water Well Association, Worthington, Ohio, 1984, p. 149.

    Google Scholar 

  107. L. N. Plummer, W. Back, Am. J. Sci. 280, 130 (1980).

    Google Scholar 

  108. L. N. Plummer, B. F. Jones, A. H. Truesdell: U. S. Geological Survey Water-Resources Investigations Report 76–13, 1976.

    Google Scholar 

  109. L. N. Plummer, D. L. Parkhurst, D. C. Thorstenson, Geochim. Cosmochim. Acta 47, 665 (1983).

    Google Scholar 

  110. L. N. Plummer, J. F. Busby, R. W. Lee, B. B. Hanshaw, Water Resour. Res. 26, 1981 (1990).

    Google Scholar 

  111. E. J. Reardon, P. Fritz, J. Hydrology 36, 201 (1978).

    Google Scholar 

  112. J. C. Vogel, In: Isotopes in Hydrology, IAEA, Vienna, 1967, p. 255.

    Google Scholar 

  113. L. N. Plummer, E. C. Prestemon, D. L. Parkhurst: An Interactive Code (NETPATH) for Modeling Net Geochemical Reactions along a Flow Path, U. S. Geological Survey Water-Resources Investigations Report 91–4078,1991.

    Google Scholar 

  114. J. C. Fontes, In: Radiocarbon After Four Decades. An Interdisciplinary Perspective, Springer-Verlag, New York, 1992, p. 242.

    Google Scholar 

  115. A. Long, E. M. Murphy, S. N. Davis, R. M. Kalin, In: Radiocarbon After Four Decades. An Interdisciplinary Perspective, Springer-Verlag, New York, 1992, p. 288.

    Google Scholar 

  116. S. Kaufman, W. F. Libby, Phys. Rev. 93, 1337 (1954).

    Google Scholar 

  117. R. Moore, E. R. Buskirk, Nature 189, 149 (1961).

    Google Scholar 

  118. R. M. Brown, W. E. Grummitt, Can. J. Chem. 34, 220 (1956).

    Google Scholar 

  119. H. G. Ostlund, M. O. Rinkel, C. Rooth, J. Geophys. Res. 74, 4535 (1969).

    Google Scholar 

  120. B. Th. Verhagen, In: Radioactive Dating and Methods of Low-level Counting, International Atomic Energy Agency, Viena, 1967, p. 657.

    Google Scholar 

  121. G. Israel, Zeitschrift für Naturforschung 17a, 925 ( 1962).

    Google Scholar 

  122. W. B. Clarke, W. J. Jenkins, Z. Top, Int. J. Appl. Radiat. Isot. 27, 515 (1976).

    Google Scholar 

  123. W. J. Jenkins: IAEA Report TECDOC 246, Vienna, 1981.

    Google Scholar 

  124. R. Bayer, P. Schlosser, G. Bönisch, H. Rupp, F. Zaucker, G. Zimmek: Performance and blank components of a mass spectrometric system for routine measurement of helium isotopes and tritium by the 3He ingrowth method. Sitzungsberchte der Heidelberger Akademie der Wissenschaften Mathematisch-naturwissenschaftliche Klasse, Vol. 5, 240, Springer Verlag, Berlin, 1989.

    Google Scholar 

  125. I. N. Tolstikhin, I. L. Kamenskiy, Geokhimiya 8, 1027 (1969).

    Google Scholar 

  126. W. Weiss, W. J. Jenkins, ZFI Mitt. 29, 292 (1980).

    Google Scholar 

  127. P. Jean-Baptiste, C. Andrie, M. Lelu, Glass Techn. 30(6), 228 (1989).

    Google Scholar 

  128. A. Suckow, P. Schlosser, H. Rupp, R. Bayer, Glass Techn. 31(4), 160 (1990).

    Google Scholar 

  129. M. C. F. Lynch, D. J. Kay, In: Methods of Low Level Counting and Spectrometry, IAEA Report SM-252, Vienna, 1981,p.511.

    Google Scholar 

  130. P. Jean-Baptiste, F. Mantisi, A. Dapoigny, M. Stievenard, Appl. Radiat. Isot. 43(7), 881 (1992).

    Google Scholar 

  131. J. H. Reynolds, P. M. Jeffery, G. A. McCrory, P. M. Varga, Rev. Sci. Instuments 49, 547 (1978).

    Google Scholar 

  132. J. Schröder, K. O. Münnich, Nature 233, 614 (1971).

    Google Scholar 

  133. É. Csongor, Acta Phys. Acad. Sci. Hung. 34, 249 (1973).

    Google Scholar 

  134. É. Csongor, In: Proc. First Int. Conf. on Low-Radioactivity Measurements and Applications, High Tatras, 1975, VEDA, Bratislava, 1977, p. 471.

    Google Scholar 

  135. A. Sittkus, H. Stockburger, Naturwissenschaften 63, 266 (1976).

    Google Scholar 

  136. E. G. Tertyšnik, A. A. Siverin, W. G. Barbanov, At. Energy 42, 5 (1977).

    Google Scholar 

  137. K. Telegadas, G. J. Ferber, Science 190, 882 (1975).

    Google Scholar 

  138. D. Heller, W. Roedel, K. O. Münnich, Naturwissenschaften 64, 383 (1977).

    Google Scholar 

  139. K. Rozanski, A. Ostrowski, Nukleonika 22, 343 (1977).

    Google Scholar 

  140. H. Stockburger, H. Sarorius, A. Sittkus, Naturforsch. 32a, 1249 (1977).

    Google Scholar 

  141. R. Pannetier: CEA Rapp., CEA-R-3591.

    Google Scholar 

  142. J. Schröder, W. Roether, In: Isotope Ratios as Pollutant source and Behaviour Indicators, IAEA, Vienna, 1974, p. 231.

    Google Scholar 

  143. É. Csongor, L. Wilhelmová, Z. Dvorák, P. Povinec, M. Grgula, Appl. Radiat. Isot. 39(5), 401 (1988).

    Google Scholar 

  144. L. Wilhelmová, M. Tomášek, K. Štukheil, J. Radioanal Nucl. Chem. Letters 144(2), 125 (1990).

    Google Scholar 

  145. É. Csongor, In: Proc. 2nd Int. Conf. on Low-Radioactivity Measurements and Applications, High Tatras, 1980. VEDA, Bratislava, 1982, p. 357.

    Google Scholar 

  146. H. Oeschger, A. Gugelmann, H. H. Loosi, U. Schotterer, U. Siegenthaler, W. Wiest, In: Isotope Techniques in Groundwater Hydrology 1974, Vol. II, IAEA, Vienna, 1974, p. 179.

    Google Scholar 

  147. J. Salvamoser, Naturwissenschaften 68, 328 (1981).

    Google Scholar 

  148. K. Rozanski, T. Florkowski, In Isotope Hydrology 1978, IAEA, Vienna, 1979, p. 949.

    Google Scholar 

  149. J. Held, S. Schuhbeck, W. Rauert, Appl. Radiat. Isot. 43(7), 939 (1992).

    Google Scholar 

  150. H. Stockburger, A. Sittkus, Naturforsch. 30a, 962 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hertelendi, E. (1998). Radiometric Methods for Dating Groundwater. In: Vértes, A., Nagy, S., Süvegh, K. (eds) Nuclear Methods in Mineralogy and Geology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5363-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5363-2_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7447-3

  • Online ISBN: 978-1-4615-5363-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics