Skip to main content
  • 515 Accesses

Abstract

Radioactive dating methods involve radioactive isotopes of various elements and, of the 1400 to 1500 nuclides known presently, more than four-fifths are radioactive although most of them do not occur naturally because of their very rapid rates of radioactive decay. To obtain the ages of rocks and minerals, naturally occurring radioisotopes are used which continued to exist long after the Big Bang because of their extremely slow decay rates. This is the case with 238U, 235U, 232Th, 87Rb and 40K. However, some arise from the decay of long lived, naturally occurring radioactive parents, among them 234U, 230Th and 226Ra. And a few may be created by natural nuclear reactions, for instance 14C (radiocarbon), 10Be and 3H (tritium). While today, artificial radioisotopes have been introduced into the environment by thermonuclear testing and the operation of nuclear fission reactors and particle accelerators. Whatever its source, radioactivity is significant with regard to geochronology and radioactive dating researches really began in an attempt to determine the age of the Earth. This was not long after Henri Becquerel’s discovery of it in 1896 and the work of Marie Curie who found that thorium and uranium minerals emit radiation and later identified two new elements, polonium and radium. In fact, it is from the latter that the word “radioactivity” derived. So by 1913, it became possible for serious investigations to be made regarding our planet’s age, a matter referred to by Arthur Holmes as indelicate, adding that they were in progress anyhow because “Science knows no shame”. Subsequently, dramatic developments have taken place and determining the ages of minerals, rocks, archaeological and historical objects and so on is now routine. The major methods for achieving this are discussed in this chapter of which the main aim is to provide a brief perspective of the subject which is actually vast in scope. These are listed alphabetically and include four radiation damàge techniques which are electron spin resonance, fission track dating, pleochroic haloes and thermoluminescence. No effort has been made to describe new approaches still being developed such as the La/Ce isotope scheme which constitutes a potentially powerful adjunct to the Sm/Nd method for petrogenetic studies but which is impeded because of the conflict between the best determination by counting of the β-decay half-life of La (3.02x1011 a−1) and geological half-life assessments based on La/Ce and Sm/Nd mineral isochrons. In addition, it has been necessary to exclude information apropos recent research progress because of space restrictions. Also because readers will have different scientific requirements and most may not be involved in radiometric dating concerned with changes in the radioactivities of samples. Anyone interested in acquiring more detailed knowledge can consult the author’s “Isotopes in the Earth Sciences” (Chapman & Hall, London, 1994) or a second edition of this now prepared and published in 1997 called “Radioactive and Stable Isotope Geology” which has a co-author, H.-G. Attendorn, and published by Chapman & Hall. Nevertheless this chapter offers a useful and compact synopsis of radioactive dating methods for non-specialist professionals and moreover for students of the earth sciences too.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. M. Merrihue, G. Turner, J. Geophys. Res., 71, 2852 (1966)

    Google Scholar 

  2. G. Turner, in Meteorite Research ed. P. M. Millman, Reidel Publishing Co., Dordrecht, 407 (1969)

    Chapter  Google Scholar 

  3. G. B. Dalrymple, US Geol. Surv. Bull., 1890, 89 (1989)

    Google Scholar 

  4. M. J. Kunk, L. W. Snee, B. M. French, S. S. Harlan, J. J. McGee, Lunar and Planetary Sciences XXIV, Part 1 A-F, Lyndon B. Johnson Space Center, Houston, 835 (1993)

    Google Scholar 

  5. J. D. Blum, C. Pege Chamberlain, M. P. Hingston, C. Koeberl, L. E. Marin, B. C. Schuraytz, V. L. Sharpton, Nature, 364, 325 (1993)

    Article  Google Scholar 

  6. T. Lee, T.-L. Ku, H.-L. Lu, J.-C. Chen, First detection of fallout Cs-135 and potential applications of 137Cs/135Cs ratios. Geochim. Cosmochim. Acta, 57, 3493–3497 (1993)

    Article  Google Scholar 

  7. D. Lal, B. L. K. Somanyajulu, Tectonophysics, 105, 383 (1984)

    Article  Google Scholar 

  8. D. K. Pal, C. Tuniz, R. K. Moniot, T. H. Kruse, G. F. Herzog, Science, 218, 787 (1982)

    Article  Google Scholar 

  9. D. Lal, S. Peters, in Handbuch der Physik ed. K. Sitte, Springer-Verlag, Berlin, 351 (1967)

    Google Scholar 

  10. H. W. Bentley, F. M. Phillips, S. N. Davis, in Handbook of Environmental Geochemistry, Vol. 2, The Terrestrial Environment ed. P. Fritz, J.-C. Fontes, Elsevier, Amsterdam, 427 (1986)

    Google Scholar 

  11. D. Elmore, L. E. Tubbs, D. Newman, X. Z. Ma, R. Finkel, K. Nishiisumi, J. Beer, H. Oeschger, M. Andree, Nature, 300,735 (1982)

    Article  Google Scholar 

  12. Carlsson, T. Olsson, J. N. Andrews, J.-G. Fontes, J. L. Michelot, K. Nordstrom, SKBF/KBS Prog. Rept 83-01, Stockholm (1983)

    Google Scholar 

  13. M. W. Kuhn, S. N. Davis, H. W. Bentley, R. Zito, Geophys. Res. Letts, 11, 607 (1984)

    Article  Google Scholar 

  14. V. V. Kuzimov, A. A. Pomansky, Radiocarbon, 22, 311 (1980)

    Google Scholar 

  15. D. E. Alburger, G. Harbottle, E. F. Norton, Earth Planet. Sci. Lett., 78, 168 (1986)

    Article  Google Scholar 

  16. A. L. Odom, W. J. Rink, Geology, 17, 55 (1988)

    Article  Google Scholar 

  17. A. J. Hurford, P. F. Green, Earth Planet. Sci., Lett., 59, 343 (1983)

    Article  Google Scholar 

  18. P. F. Green, Isotope Geoscience, 58, 1 (1985)

    Article  Google Scholar 

  19. P. K. Zeitler, N. M. Johnson, G. W. Maeser, R. A. K. Tahirkeli, Nature, 298, 255 (1982)

    Article  Google Scholar 

  20. A. J. W. Gleadow, I. R. Duddy, P. L. Green, K. A. Hegarty, Earth Sci. Planet. Lett., 78, 245 (1986)

    Article  Google Scholar 

  21. P. J. Patchett, M. Tatsumoto, Cont. Min. Pet., 78, 279 (1981)

    Article  Google Scholar 

  22. H. S. Pettingell, P. J. Patchett, M. Tatsumoto, S. Moorbath, Earth Planet. Sci. Lett., 55, 150 (1981)

    Article  Google Scholar 

  23. P. J. Patchett, M. Tatsumoto, Geophys. Res. Letts, 7, 1077 (1980)

    Article  Google Scholar 

  24. Q. Z. Yin, E. Jagoutz, A. B. Yerkhovskiy, H. Wänke, Geochim. Cosmochim. Acta, 57, 4119 (1993)

    Article  Google Scholar 

  25. K. H. Rubin, J. D. Macdougall, M. R. Perfit, 210Po-210Pb dating of recent volcanic eruptions on the sea floor. Nature, 368, 841–844 (1994)

    Article  Google Scholar 

  26. J. C. Roddick, Earth Planet, Sci. Lett., 12, 300 (1983)

    Google Scholar 

  27. T. J. Dempster, Earth Planet. Sci. Lett., 78, 355 (1986)

    Article  Google Scholar 

  28. C. Chopin, H. Maluski, Cont. Min. Pet., 74, 109 (1980)

    Article  Google Scholar 

  29. R. H. Verschure, P. A. M. Andriessen, N. A. I. M. Boelrijk, E. H. Hebeda, C. Maijer, H. N. A. Priem, E. A. Th. Verdunnen, Cont. Min. Pet., 74, 245 (1980)

    Article  Google Scholar 

  30. A. L. Armstrong, in Potassium-Argon Dating ed. D. A. Schaeffer, J. Zahringer, Springer-Verlag, New York, 117 (1966)

    Chapter  Google Scholar 

  31. C. H. Stockwell, Geol. Surv. Canada, Paper 80-19, Part 1, 135 pp (1982)

    Google Scholar 

  32. B. D. Marshall, D. J. DePaolo, Geochim. Cosmochim. Acta, 46, 2537 (1982)

    Article  Google Scholar 

  33. P. H. Fowler, A. R. Lang, Nature, 270, 163 (1977)

    Article  Google Scholar 

  34. S. R. Hashemi-Nezhad, J. H. Fremlin, S. A. Durrant, Nature, 278, 333 (1979)

    Article  Google Scholar 

  35. J. R. Arnold, W. F. Libby, Science, 110, 678 (1949)

    Article  Google Scholar 

  36. I. Karlen, I. U. Olsson, P. Kalberg, S. Kilicci, Arkiv. Geofysik., 6, 465 (1966)

    Google Scholar 

  37. H. Godwin, Nature, 195, 984 (1962)

    Article  Google Scholar 

  38. H. De Vries, proc. Koninkl. Ned. Akad. Wetenschap., B61, 94 (1958)

    Google Scholar 

  39. H. E. Suess, Science, 122, 415 (1955)

    Article  Google Scholar 

  40. K.O. Münnich, Naturwiss.,44, 32 (1957)

    Article  Google Scholar 

  41. C. R. Gleidmpin, G. A. Jones, J. Geophys. Res., 98, 14557 (1993)

    Google Scholar 

  42. E. R. M. Druffel, S. Griffin, J. Geophys. Res., 98, 20249 (1993)

    Google Scholar 

  43. J. M. Luck, L. Birck, C. J. Allégre, Nature, 283, 256 (1980)

    Article  Google Scholar 

  44. K. Bell, J. L. Powell, I Petrol., 10, 536 (1969)

    Article  Google Scholar 

  45. D. A. Papanastassiou, G. J. Wasserburg, Eartl Planet. Sci. Lett., 5, 361 (1969)

    Article  Google Scholar 

  46. L. E. Nyquist, Phys. and Chem. of the Earth, 10, 103 (1977)

    Google Scholar 

  47. P. J. Hamilton, N. M. Evensen, R. K. O’Nions, H. S. Smith, A. J. Erlank, Nature, 277, 325 (1979)

    Article  Google Scholar 

  48. A. G. Wintle, J. A. Westgate, Geology, 14, 594 (1986)

    Article  Google Scholar 

  49. J. A. Strain, P. D. Townsend, B. Jassemnjad, S. W. S. McKeever, Earth Planet. Sci. Lett., 77, 14 (1986)

    Article  Google Scholar 

  50. D. Lal, H. E. Suess, Ann. Rev. Nucl. Sci., 18, 407 (1968)

    Article  Google Scholar 

  51. L. L. Thatcher, B. R. Payne, Proc. 6th Internat’ 1 Conf. Radiocarbon and Tritium Dating, Pullman, Washington, 604 (1965)

    Google Scholar 

  52. T. Dinçer, G. H. Davis, Proc. 8th Cong. Internat’1 Assoc. Hydrogeol., Istanbul, Turkey, 276 (1967)

    Google Scholar 

  53. G. B. Allison, M. W. Hughes, Proc. Interpretation of Environmental Isotopes and Hydrochemical Data, Vienna, Austria, IAEA, SM/182/4,,57 (1976)

    Google Scholar 

  54. M. Bernat, C. J. Allegre, Earth Planet. Sci. Lett., 21, 310 (1974)

    Article  Google Scholar 

  55. M. S. Baxter, R. W. Crawford, D. S, Swan, J. G. Farmer, Earth Planet. Sci. Lett., 53, 434 (1981)

    Article  Google Scholar 

  56. W. S. Broecker, J. Geophys. Res., 68, 2817 (1963)

    Google Scholar 

  57. M. Milankovitch, Theorie Mathematique des Phenomenes Thermiques produits par la radiation solaire. Gauthier-Villaris, Paris (1920)

    Google Scholar 

  58. D. L. Thurber, J. Geophys. Res., 67, 4318 (1962)

    Google Scholar 

  59. J. Kronfeld, E. Rosenthal, J. Hydrol., 50, 179 (1981)

    Article  Google Scholar 

  60. S. S. Goldich, M. G. Mudrey Jnr, in Cont. to recent geochemistry and analytical chemistry, A. P. Vinogradov Volume.ed. A. I. Tugarinov, Nauka Publ. Office, Moscow, 415 (1972)

    Google Scholar 

  61. A. Holmes, Nature, 157, 680 (1946)

    Article  Google Scholar 

  62. F. G. Houtermans, Naturwiss., 33, 185 (1946)

    Article  Google Scholar 

  63. R. D. Russell, R. M. Farquhar, Lead isotopes in Geology, Interscience Publishers, New York (1960)

    Google Scholar 

  64. R. A. Alpher, R. C. Herman, Phys. Rev., 84, 1111 (1951)

    Article  Google Scholar 

  65. V. G. Khlopin, E. K. Gerling, N. V. Baruiovaknya, (1947). The presence of certain stable products of the spontaneous disintegration of uranium in nature. Bull. Acad. Sci. Chim., 599–604 (in Russian).

    Google Scholar 

  66. J. MacNamara, H. G. Thode, (1950). The isotopes of xenon and krypton in pitchblende and the spontaneous fission of uranium. Phys. Rev., 80, 471–472.

    Article  Google Scholar 

  67. J. Eikenberg, P. Signer, R. Wieler, (1993). U-Xe, U-Kr and U-Pb systematics for dating uranium minerals and investigations of the production of nucleogenic neon and argon. Geochimica et Cosmochimica Acta, 57, 1053–1069.

    Article  Google Scholar 

  68. von Gunten, H. R. (1969). Distribution of mass in spontaneous and neutron-induced fission. Actinide Rev., 1, 275–298.

    Google Scholar 

  69. P. K. Kuroda, R. R. Edwards, F. T. Ashizawa, (1956). Radiochemical measurements of the natural fission rate of uranium and the natural occurrence of short-lived iodine isotopes. J. Chem. Phys., 25, 603–609.

    Article  Google Scholar 

  70. R. L. Fleischer, B. P. Price, (1964). Decay constant for spontaneous fission Phys. Rev., 133, B63–B64.

    Google Scholar 

  71. Shukolyukov, Yu. A. (1970). The decay of uranium nuclei in nature. Atomizdat Publisky, Moskva (in Russian).

    Google Scholar 

  72. E. A. C. Crough, (1977). Fisson Product Yields from Neutron-Induced Fission. Atomic Data and Nuclear Data Tables. Harwell Acad. Press.

    Google Scholar 

  73. E. H. Hebeda, M. Freudel, L. Schultz (1987). Radiogenic, fissiogenic and nucleogenic noble gases in zircons. Earth Planet. Sci. Lett, 85, 79–90.

    Article  Google Scholar 

  74. Pepin, R. O., Phinney, D. (1976). The formation interval of the earth. Lunar Sci., VII, 682–684.

    Google Scholar 

  75. T. J. Bernatowicz, F. A. Podosek, (1978). Nuclear components in the atmosphere. In Terrestrial Rare Gases, ed. E. C. Alexander, M. Ozima, Scientific Society Press, Japan, 99–135.

    Chapter  Google Scholar 

  76. Staudacher, T., Allegre, C. J. (1982). Terrestrial xenology. Earth Planet. Sci. Lett., 60, 389–406.

    Article  Google Scholar 

  77. W. H. Fleming, H. G. Thode, (1953). Neutron and spontaneous fission in uranium ores. Phys. Rev., 90, 378–382.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bowen, R. (1998). Radioactive Dating Methods. In: Vértes, A., Nagy, S., Süvegh, K. (eds) Nuclear Methods in Mineralogy and Geology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5363-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5363-2_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7447-3

  • Online ISBN: 978-1-4615-5363-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics