Skip to main content

Nuclear Reaction Prompt Gamma-Ray Analysis

  • Chapter
Nuclear Methods in Mineralogy and Geology

Abstract

Mineral analysis concerns earth materials which contain all the elements in the Periodic Table. There are many sensitive methods for laboratory analysis of minerals and ores. Neutron activation analysis (NAA), described in Chapter II, is one of the most widely used techniques. It is not applicable, however, to several important (mainly) light elements and should be complemented by other methods. Nuclear reaction induced gamma-ray methods come to help in these instances. Since nuclear reactions are nearly always accompanied by the emission of prompt gamma rays, methods based on the on-line detection of prompt gamma rays from nuclear reactions enable (at least in principle) the determination of any element contained in the sample. Neutron-capture prompt gamma activation analysis (PGAA) is the most accurate complementary method for bulk samples, whereas for thin layers or surfaces charged particle induced gamma-ray emission (PIGE) complements the very accurate and sensitive particle-induced X-ray emission (PIXE) method, based on X-ray detection, in that PIGE is more sensitive to light elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Activation Analysis, Vols I,II, Ed. Zeev B. Alfassi. CRC Press, Inc., Boca Raton, 1990

    Google Scholar 

  2. Prompt Gamma Neutron Activation Analysis, Eds. Zeev B. Alfassi and Chien Chung. CRC Press, Inc., Boca Raton, 1995

    Google Scholar 

  3. T. L. Isenhour, G. H. Morrison, Anal. Chem. 38, 162 (1966)

    Article  Google Scholar 

  4. D. D. Clark, T. Z. Hossain, p. 977 in J. Kern, ed., Capture Gamma-Ray Spectroscopy and Related Topics, World Scientific, Singapore, 1994

    Google Scholar 

  5. C. Chung: Instruments and Shielding, p. 13 in Ref. 2

    Google Scholar 

  6. Z. B. Alfassi: PGNAA with Radioisotopic Sources, Neutron Generators, and Charged Particles, p. 75 in Ref 2

    Google Scholar 

  7. Z. B. Alfassi: Prompt Gamma Neutron Activation Analysis with Reactor Neutrons, p. 59 in Ref 2

    Google Scholar 

  8. E. S. Gladney, D. B. Curtis, E. T. Jurney, J. Radioanal. Chem. 46, 299 (1978)

    Article  Google Scholar 

  9. M. Spychala, W. Michaelis, H.-U. Fanger, Nucl. Geophys. 1, 309 (1987)

    Google Scholar 

  10. M. P. Failey, D. L. Anderson, W. H. Zoller, G. E. Gordon, R. M. Lindstrom, Anal. Chem. 51, 2209 (1979)

    Article  Google Scholar 

  11. D. L. Anderson, M. P. Failey, W. H. Zoller, G. E. Gordon, R. M. Lindstrom, J. Radioanal. Chem. 63, 97 (1981)

    Article  Google Scholar 

  12. A. G. Hanna, R. M. Brugger, M. D. Glascock, Nucl. Instrum. Methods 188, 619 (1981)

    Article  Google Scholar 

  13. R. M. Lindstrom, R. Zeisler, M. Rossbach,. J Radioanal. Nucl. Chem. 112, 321 (1987)

    Article  Google Scholar 

  14. R. Henkelmann, H.-J. Born, J. Radioanal. Chem. 16, 473 (1973)

    Article  Google Scholar 

  15. C. Chung: Neutron Damage and Induced Effects on Nuclear Instruments Used for PGAA, p. 37 in Ref. 2

    Google Scholar 

  16. V. D. Svikis, Nucl. Inst. Methods 25, 93 (1963)

    Article  Google Scholar 

  17. T. Kobayashi, K. Kanda, Report KURRI-TR-198, Kyoto University Research Reactor Institute, 1980 (in Japanese).

    Google Scholar 

  18. B. M. Rustad, C. J. Christensen, B. Skytte Jensen, Nucl. Instrum. Methods 33, 155 (1965)

    Article  Google Scholar 

  19. S. M. Lombard, T. L. Isenhour, P. H. Heintz, G. L. Woodruff, W. E. Wilson, Int. J. Appl. Radial Isotopes 19 15 (1968)

    Article  Google Scholar 

  20. N. A. Frigerio and L. L. LaVoy, Nucl. Technol. 10, 322 (1971)

    Google Scholar 

  21. C. A. Stone, D. H. Blackburn, D. A. Kauffman, D. C. Cranmer, I. Olmez, Nucl. Instrum. Methods A349, 515 (1994)

    Google Scholar 

  22. I. Lazebnik, PNPI Gatchina, Russia, pers. comm. (1994)

    Google Scholar 

  23. C. G. Clayton, J. S. Schweitzer (1993), Nuclear Geophysics 7, 143 (1993)

    Google Scholar 

  24. G.F. Knoll: Radiation Detection and Measurement, 2nd ed., Wiley, New York, 1989

    Google Scholar 

  25. K. Debertin, R. G. Helmer: Gamma-and X-ray Spectrometry with Semiconductor Detectors, North-Holland, Amsterdam, 1988

    Google Scholar 

  26. E. Schonfeld, Nucl. Instrum. Methods 42, 213 (1966)

    Article  Google Scholar 

  27. X-ray and Gamma-Ray., Standards for Detector Calibration, IAEA TECDOC-619, International Atomic Energy Agency, Vienna, 1991

    Google Scholar 

  28. B. Krusche, K.-P. Lieb, H. Daniel, T. von Egidy, G. Barreau, H. G. Borner, R. Brissot, C. Hofmeyr, R. Rascher, Nucl. Phys. A386, 245 (1982)

    Google Scholar 

  29. A. M. J. Spits, J. Kopecky, Nucl. Phys. A264, 63 (1976)

    Google Scholar 

  30. M.A. Lone, R.A. Leavitt, D.A. Harrison, Atomic Data Nucl. Data Tables 26, 511 (1981)

    Article  Google Scholar 

  31. J. K. Tuli: Thermal Neutron Capture Gamma-Rays, p. 177 in Ref. 2

    Google Scholar 

  32. R.M. Lindstrom, C. Yonezawa: Prompt Gamma Activation Analysis with Guided Beams, p. 93 in Ref. 2

    Google Scholar 

  33. Y.S. Khrbish, N.M. Spyrou, J. Radioanal. Nucl. Chem. 151, 55 (1991)

    Article  Google Scholar 

  34. F. De Corte, A. Simonits, A. De Wispelare, A. Elek, J. Radioanal. Nucl. Chem. 133, 3 (1989)

    Article  Google Scholar 

  35. F. De Corte, A. Simonits, J. Radioanal. Nucl. Chem. 133, 43 (1989)

    Article  Google Scholar 

  36. Gad Shani: Activation Analysis with Isotopic Sources, Vol. II, p.239 in Ref 1

    Google Scholar 

  37. S. W. Yates, A. J. Filo, C. Y. Cheng, D. F. Coope, J. Radioanal. Nucl. Chem. 46, 343 (1978)

    Article  Google Scholar 

  38. N. P. Kocherov: Neutron Induced Reaction Cross-Section Data for Nuclides Required for Borehole Logging and Mineral Analysis, p. 55 in: Handbook on Nuclear Data for Borehole Logging and Mineral Analysis, Technical Report Series No. 357, International Atomic Energy Agency, Vienna, 1993

    Google Scholar 

  39. M. Peisach: Prompt Activation Analysis with Charged Particles, Vol. II, p. 143 in Ref. 1

    Google Scholar 

  40. W.D. Ehmann, D.E. Vance: Radiochemistry and Nuclear Methods of Analysis, Wiley, New York, 1991

    Google Scholar 

  41. H. Maier-Leibnitz and T. Springer, Reactor Science and Technology 17, 217 (1963)

    Google Scholar 

  42. C. F. Majkrzak, Applied Optics 23, 3524 (1984)

    Article  Google Scholar 

  43. M. Rossbach, Anal. Chem. 63, 2156 (1991)

    Article  Google Scholar 

  44. R. M. Lindstrom, R. Zeisler, D. H. Vincent, R. R. Greenberg, C. A. Stone, D. L. Anderson, D. D. Clark, and E. A. Mackey, J. Radioanal. Nucl. Chem. 167, 121 (1993)

    Article  Google Scholar 

  45. R. L. Paul, R. M. Lindstrom, A. E. Heald, J. Radioanal. Nucl. Chem., 215, 63 (1997)

    Article  Google Scholar 

  46. C. Yonezawa, Anal. Sciences 9, 185 (1993)

    Article  Google Scholar 

  47. G. Molnár, Z. Révay, Á. Veres, A. Simonits, and H. Rausch, J. Radioanal. Nucl. Chem. 167, 133 (1993)

    Article  Google Scholar 

  48. G. Molnár, T. Belgya, L. Dabolczi, B. Fazekas, Z. Révay, Á. Veres, I. Bikit, Z. Kiss, and J. Östör, J. Radioanal. Nucl Chem., 215, 111 (1997)

    Article  Google Scholar 

  49. K. Ünlü, C. Rios-Martinez, B. W. Wehring, J. Radioanal. Nucl. Chem. 193, 145 (1995)

    Article  Google Scholar 

  50. D. F. R. Mildner, H. Chen, R. G. Downing, and V. A. Sharov, Acta Physica Hungarica 75, 183 (1994)

    Google Scholar 

  51. D. F. R. Mildner, Nucl. Instrum. Methods 200, 167 (1982)

    Article  Google Scholar 

  52. M. Rossbach, O. Schärpf, W. Kaiser, W. Graf, A. Schirmer, W. Faber, J. Duppich, and R. Zeisler, Nucl. Instrum. Methods B35, 181(1988)

    Google Scholar 

  53. J. R. D. Copley and C. F. Majkrzak, in C. F. Majkrzak, ed., Proc. SPIE 983, Soc. Photo-Optical Instrum. Eng., Bellingham, WA, (1989) p. 93

    Google Scholar 

  54. B. W. Wehring, J.-Y. Kim, and K. Ünlü, Nucl. Instrum. Methods A353, 137 (1994)

    Google Scholar 

  55. M. A. Kumakhov and V. A. Sharov, Nature 357, 390 (1992)

    Article  Google Scholar 

  56. H. Chen, D. F. R. Mildner, and Q. F. Xiao, Appl. Phys. Lett. 64, 2068 (1994)

    Article  Google Scholar 

  57. H. Chen, V. A. Sharov, D. F. R. Mildner, R. G. Downing, R. L. Paul, R. M. Lindstrom, C. J. Zeissler, Q. F. Xiao, Nucl. Instrum. Methods B95, 107 (1995)

    Google Scholar 

  58. Z. Alfassi, p. 1 in Ref. 2

    Google Scholar 

  59. C. Chung, L.J. Yuan, Nucl. Instrum. Methods A243, 102 (1986)

    Google Scholar 

  60. C. Yonezawa, A. K. Haji Wood, M. Hoshi, Y. Ito, E. Tachikawa, Nucl. Instrum. Methods A329, 207 (1993)

    Google Scholar 

  61. T. Belgya, B. Fazekas, I. Héjja, Z. Kiss, J. Östör, Zs. Révay, G. Molnár, unpublished.

    Google Scholar 

  62. P. A. Aarnio, M. T. Nikkinen, J. T. Routti, J. Radioanal. Nucl. Chem. 160, 289 (1992)

    Article  Google Scholar 

  63. GENIE-PC, Ver. 2.0 Users Manual, Canberra Industries, 1994

    Google Scholar 

  64. S.I. Najafi: Computerized Analysis of Gamma-Ray Spectra, p. 9 in Ref. 1

    Google Scholar 

  65. J. T. Routti, S. G. Prussin, Nucl. Instrum. Methods 72, 125 (1969)

    Article  Google Scholar 

  66. G. W. Phillips and K. W. Marlow, Nucl. Instrum. Methods 137, 525 (1976)

    Article  Google Scholar 

  67. Canberra — Nuclear Data HYPERMET V1. 1, Canberra Industries

    Google Scholar 

  68. B. Fazekas, T. Belgya, L. Dabolczi, G. Molnar, J. Trace and Microprobe Techn. 14(1), 167 (1996)

    Google Scholar 

  69. Current Trends in Nuclear Borehole Logging Techniques for Elemental Analysis, Report IAEA-TECDOC-464, International Atomic Energy Agency, Vienna, 1988

    Google Scholar 

  70. R. J. Rosenberg: Prompt Gamma Neutron Activation Analysis in Borehole Logging and Industrial Process Control, IAEA-TECDOC-537, International Atomic Energy Agency, Vienna, 1990

    Google Scholar 

  71. J.-H. Chao, In Situ Applications, p. 131 in Ref. 2.

    Google Scholar 

  72. J. Conaway, D. George, J. Mikesell, J. Burnham, J. Duray, S. Frankle, J. Hearst, P. Jaegers, P. Nelson, R. Wilson, Trans. Am. Nucl. Soc. 72, 118 (1995)

    Google Scholar 

  73. T. Gozani, E. Pentaleri, Trans. Am. Nucl. Soc. 72, 123 (1995)

    Google Scholar 

  74. J. A. Grau, D. V. Ellis, R. E. Newis, R. E. Engelman, Trans. Am. Nucl. Soc. 72, 122 (1995)

    Google Scholar 

  75. F. H. Ruddy, T. V. Congedo, A. R. Dulloo, J. G. Seidel, R. P. Williams, D. H. Weigle, Trans. Am. Nucl. Soc. 72, 119(1995)

    Google Scholar 

  76. P. Shea, T. Gozani, H. Bozorgmanesh, Nucl. Instrum. Methods A299, 444 (1990)

    Google Scholar 

  77. A. J. Caffrey, R. J. Gehrke, R. C. Greenwood, J. K. Hartwell, K. M. Krebs, G. D. McLaughlin, Trans. Am. Nucl. Soc. 72, 125 (1995)

    Google Scholar 

  78. B. D. Sowerby, Nucl. Geophys. 5 (1991)

    Google Scholar 

  79. J.-H. Chao, On-Line Applications, p. 159 in Ref. 2.

    Google Scholar 

  80. Nuclear Analytical Techniques for On-Line Elemental Analysis in Industry, IAEA-TECDOC-459, International Atomic Energy Agency, Vienna, 1988

    Google Scholar 

  81. E. S. Gladney, E. T. Jurney, D. B. Curtis, Anal. Chem. 48, 2139 (1976)

    Article  Google Scholar 

  82. M. D. Higgins, M. G. Truscott, D. M. Shaw, M. Bergeron, G. H. Buffet, J. R. D. Copley, W. V. Prestwich, p. 690 in O. K. Harling, L. Clark, P. von der Hardt, eds., Use and Development of Low and Medium Flux Research Reactors, MIT Press, Cambridge, 1983

    Google Scholar 

  83. E. S. Gladney, Report LA-8028-MS, Los Alamos Scientific Laboratory, 1979

    Google Scholar 

  84. M. D. Glascock, Report University of Missouri, Columbia, 1984

    Google Scholar 

  85. D. L. Anderson, Y. Sun, M. P. Failey, W. H. Zoller, Geostand. Newslett. 9, 219 (1985)

    Article  Google Scholar 

  86. S. A. Kerr, R. A. Oliver, P. Vittoz, G. Vivier, F. Hoyler, T. D. MacMahon, N. I. Ward, J. Radioanal. Nucl. Chem. 113, 249 (1987)

    Article  Google Scholar 

  87. D. B. Curtis, E. S. Gladney, E. T. Jurney, Geochim. Cosmochim. Acta 44, 1945 (1980)

    Article  Google Scholar 

  88. M. Zhai, D. M. Shaw, Meteoritics 29, 607 (1994)

    Google Scholar 

  89. M. E. Kitto, D. L. Anderson, W. H. Zoller, J. Atmos. Chem. 7, 241 (1988)

    Article  Google Scholar 

  90. C. Coceva, A. Brusegan, C. Van der Vorst, Nucl. Instrum. Methods A378, 511 (1996)

    Google Scholar 

  91. Evaluated Nuclear Structure and Decay Data File, maintained by the National Nuclear Data Center at Brookhaven National Laboratory, USA. Available on line on the Internet from the NNDC and the Nuclear Data Section of IAEA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Molnár, G.L., Lindstrom, R.M. (1998). Nuclear Reaction Prompt Gamma-Ray Analysis. In: Vértes, A., Nagy, S., Süvegh, K. (eds) Nuclear Methods in Mineralogy and Geology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5363-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5363-2_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7447-3

  • Online ISBN: 978-1-4615-5363-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics