Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 452))

Abstract

Over 30 million persons are infected with HIV-1 worldwide, and over 8000 new infections occur every day1. Although there have been enormous advances in antiretroviral therapy against this retrovirus, economic constraints mean that over 90% of infected persons will never benefit from these therapies. The only solution for the global epidemic is the development of an effective vaccine. Such development is predicated on the assumption that this virus can be contained by immune responses. Recent evidence now supports the contention that effective immunity can be generated in natural infection, and this provides encouragement for accelerated vaccine efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. UNAIDS: Report on the global HIV/AIDS epidemic. Geneva, Switzerland, 1998

    Google Scholar 

  2. Levy JA: Pathogenesis of human immunodeficiency virus infection. Microbiol Rev 57:183-289, 1993

    PubMed  CAS  Google Scholar 

  3. Harrer T, Harrer E, Kalams SA, et al: Strong cytotoxic T cell and weak neutralizing antibody responses in a subset of persons with stable nonprogressing HIV type 1 infection. AIDS Research & Human Retroviruses 12:585–92, 1996

    Article  CAS  Google Scholar 

  4. Pantaleo G, Menzo S, Vaccarezza M, et al: Studies in subjects with long-term nonprogressive human immunodeficiency virus infection [see comments]. New England Journal of Medicine 332:209–16, 1995

    Article  PubMed  CAS  Google Scholar 

  5. Cao Y, Qin L, Zhang L, et al: Virologic and immunologic characterization of long-term survivors of human immunodeficiency virus type 1 infection [see comments]. New England Journal of Medicine 332:201–8, 1995

    Article  PubMed  CAS  Google Scholar 

  6. Battegay M, Moskophides D, Waldner H, et al: Impairment and delay of neutralizing antiviral antibody responses by virus-specific cytotoxic T cells. J. Immunol. 151:5408–5415, 1993

    PubMed  CAS  Google Scholar 

  7. Walker BD, Chakrabarti S, Moss B, et al: HIV-specific cytotoxic T lymphocytes in seropositive individuals. Nature 328:345–8, 1987

    Article  PubMed  CAS  Google Scholar 

  8. Walker BD, Flexner C, Paradis TJ, et al: HIV-1 reverse transcriptase is a target for cytotoxic T lymphocytes in infected individuals. Science 240:64–6, 1988

    Article  PubMed  CAS  Google Scholar 

  9. Klein MR, van Baalen CA, Holwerda AM, et al: Kinetics of Gag-specific cytotoxic T lymphocyte responses during the clinical course of HIV-1 infection: a longitudinal analysis of rapid progressors and long-term asymptomatics. Journal of Experimental Medicine 181:1365–72, 1995

    Article  PubMed  CAS  Google Scholar 

  10. Rinaldo C, Huang X-L, Fan Z, et al: High levels of anti-human immunodeficiency virus type 1 (HIV-1) memory cytotoxic T-lymphocyte activity and low viral load are associated with lack of disease in HIV-1-infected long-term nonprogressors. J. Virol. 69:5838–5842, 1995

    PubMed  CAS  Google Scholar 

  11. Harrer T, Harrer E, Kalams SA, et al: Cytotoxic T lymphocytes in asymptomatic long-term nonprogressing HIV-1 infection. Breadth and specificity of the response and relation to in vivo viral quasispecies in a person with prolonged infection and low viral load. Journal of Immunology 156:2616–23, 1996

    CAS  Google Scholar 

  12. Rosenberg ER, Billingsly MB, Caliendo AM, et al: Vigorous HIV-1-specific CD4 helper cell response associated with control of viremia. Science 228:1447–1450, 1997

    Article  Google Scholar 

  13. Yang OO, Kalams SA, Trocha A, et al: Suppression of HIV-1 replication by CD8+ cells: Evidence for HLA class I restricted triggering of cytolytic and non-cytolytic mechanisms. J. Virol. 71:3120–3128, 1997

    PubMed  CAS  Google Scholar 

  14. Guidotti LG, Borrow P, Hobbs MV, et al: Viral cross talk: Intracellular inactivation of the hepatitis B virus during an unrelated viral infection of the liver. Proceedings of the National Academy of Sciences of the United States of America 93:4589–94, 1996

    CAS  Google Scholar 

  15. Guidotti LG, Ishikawa T, Hobbs MV, et al: Intracellular inactivation of the hepatitis B virus by cytotoxic T lymphocytes. Immunity 4:25–36, 1996

    Article  PubMed  CAS  Google Scholar 

  16. Cocchi F, DeVico AL, Garzino-Demo A, et al: Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science 270:1811–5, 1995

    Article  PubMed  CAS  Google Scholar 

  17. Wagner L, Yang OO, Garcia-Zepeda EA, et al: β-chemokines are released from HIV-1-specific cytolytic T-cell granules complexed to proteoglycans. Nature: In press, 1998

    Google Scholar 

  18. Carmichael A, Jin X, Sissons P, et al: Quantitative analysis of the human immunodeficiency virus type 1 (HIV-1)-specific cytotoxic T lymphocyte (CTL) response at different stages of HIV-1 infection: differential CTL responses to HIV-1 and Epstein-Barr virus in late disease. J Exp Med 177:249–56, 1993

    Article  PubMed  CAS  Google Scholar 

  19. Yang OO, Tran-Chen A, Kalams SA, et al: Lysis of HIV-1-infected cells and inhibition of viral replication by universal receptor T cells. PNAS 94:11478–11483, 1997

    Article  PubMed  CAS  Google Scholar 

  20. Collins KL, Chen BK, Kalams SA, et al: HIV-1 Nef protein protects infected primary cells against killing by cytotoxic T lymphocytes. Nature 391:397–401, 1998

    Article  PubMed  CAS  Google Scholar 

  21. von Herrath MG, Yokoyama M, Dockter J, et al: CD4-deficient mice have reduced levels of memory cytotoxic T lymphocytes after immunization and show diminished resistance to subsequent virus challenge. Journal of Virology 70:1072–9, 1996

    Google Scholar 

  22. Matloubian M, Conception RJ, Ahmed R: CD4+ T cells are required to sustain CD8+ cytotoxic T-cell responses during chronic viral infection. J. Virol. 68:8056–8063, 1994

    PubMed  CAS  Google Scholar 

  23. Berzofsky JA, Bensussan A, Cease KB, et al: Antigenic peptides recognized by T lymphocytes from AIDS viral envelope-immune humans. Nature 334:706–8, 1988

    Article  PubMed  CAS  Google Scholar 

  24. Wahren B, Morfeldt-Mansson L, Biberfeld G, et al: Characteristics of the specific cell-mediated immune response in human immunodeficiency virus infection. Journal of Virology 61:2017–2023, 1989

    Google Scholar 

  25. Pontesilli O, Carlesimo M, Varani AR, et al: In vitro lymphocyte proliferative response to HIV-1 p24 is associated with a lack of CD4+ cell decline [letter]. AIDS Research & Human Retroviruses 10:113–4, 1994

    Article  CAS  Google Scholar 

  26. Schwartz D, Sharma U, Busch M, et al: Absence of recoverable infectious virus and unique immune responses in an asymptomatic HIV+ long-term survivor. AIDS Res. Hum. Retro. 10:1703–1711, 1994

    Article  CAS  Google Scholar 

  27. Quinn TC: Acute primary HIV infection [clinical conference]. Jama 278:58–62, 1997

    Article  PubMed  CAS  Google Scholar 

  28. Bollinger RC, Brookmeyer RS, Mehendale SMea: Risk factors and clinical presentation of acute primary HIV infection in India. JAMA 278:2085–2089, 1997

    Article  PubMed  CAS  Google Scholar 

  29. Yang OO, Kalams SA, Rosenzweig M, et al: Efficient lysis of HIV-1 infected cells by cytotoxic T lymphocytes. J. of Virol. 70:5799–5806, 1996

    CAS  Google Scholar 

  30. Lori F, Jessen H, Clerici M, et al: Drugs suppressing HIV replication and cell proliferation decrease proviral DNA to undetectable levels, 5th Conference on Retroviruses and Opportunistic Infections. Chicago, IL, 1998, pp Abstract LB11

    Google Scholar 

  31. Lekutis C, Letvin NL: HIV-1 envelope-specific CD4+ T helper cells from simian/human immunodeficiency virus-infected rhesus monkeys recognize epitopes restricted by MHC class II DRB1*0406 and DRB*W201 molecules. Journal of Immunology 159:2049–57, 1997

    CAS  Google Scholar 

  32. Lekutis C, Shiver JW, Liu MA, et al: HIV-I env DNA vaccine administered to rhesus monkeys elicits MHC class II-restricted CD4+ T helper cells that secrete IFN-gamma and TNF-alpha. Journal of Immunology 158:4471–7, 1997

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce D. Walker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Walker, B.D., Rosenberg, E.S., Hay, C.M., Basgoz, N., Yang, O.O. (1998). Immune Control of HIV-1 Replication. In: Gupta, S., Sher, A., Ahmed, R. (eds) Mechanisms of Lymphocyte Activation and Immune Regulation VII. Advances in Experimental Medicine and Biology, vol 452. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5355-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5355-7_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7443-5

  • Online ISBN: 978-1-4615-5355-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics