Skip to main content

LIDAR Thomson Scattering for the ITER Core Plasma

  • Chapter

Abstract

For physics interpretations as well as for control of advanced operational scenarios the knowledge of electron temperature and density profiles of the ITER plasma is absolutely necessary. The specifications for the core measurements are 10% accuracy for the electron temperature at a spatial resolution of 10 cm over the temperature range 0.5 – 30 keV, 5% accuracy for the density at a spatial resolution of 30 cm over the range 0.1 – 3.0* 1020 m-3. The repetition rate of the measurements should be 100 Hz.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ITER DDD 5.5.0.01, Thomson scattering (core), (1997).

    Google Scholar 

  2. H. Salzmann, J. Bundgaand, A. Gadd, C. Gowers, H.B. Hansen, K. Hirsch, P. Nielsen, K. Reed, C. Schrödter, K. Weisberg, The LIDAR Thomson scattering diagnostic on JET, Rev. Sci. Instrum. 59:1451 (1988).

    Article  ADS  Google Scholar 

  3. C. Gowers, P. Nielsen, F. Qrsitto, F.J. Pijper, H. Salzmann, B. Schunke, A Thomson scattering scheme for obtaining Te and ne profiles of the ITER core plasma, in: Proc. of the Workshop on Diagnostics for ITER, Varenna, Italy, September 1995 and Report JET-P(95)44.

    Google Scholar 

  4. A.W. Molvik, R.A. Lerche, D.G. Nilson, M.D. Perry, E.B. Hooper, LIDAR Thomson scattering for advanced tokamaks &3x2014; final report, Report UCRL-ID-123434 (1996).

    Google Scholar 

  5. C. Gowers, K. Hirsch, P. Nielsen, H. Salzmann, A high rejection ruby filter for laser light scattering experiments, Appl. Optics 27:3625 (1988).

    Article  ADS  Google Scholar 

  6. K. Hirsch, M. Köchel, H. Salzmann, Shutter ratio of a gated ITT F4128 microchannel-plate photomultiplier, Rev. Sci. Instrum. 58:2339 (1987).

    Article  ADS  Google Scholar 

  7. J. Bundgaard, K.B. Hansen, K.-V. Weisberg, Electronics for microchannel photomultipliers in the LIDAR Thomson scattering diagnostic on JET, Rev. Sci. Instrum. 60:3265 (1989).

    Article  ADS  Google Scholar 

  8. H. Iida, R.T. Santoro, S. Yamamoto, Preliminary estimates of radiation streaming through LJDAR penetrations, ITER Report No. G73RI5 96-09-09 W 1.1 (1996).

    Google Scholar 

  9. ITER Report of RF Diagnostic DDG for the third Quarter 1996, Parti, Neutronic Analysis for Diagnostics, Sec. 1, LIDAR system (1996).

    Google Scholar 

  10. E.R. Hodgson, A. Morono:’ sample EC W-T28-01’, ITER R&D Task T28 ‘Irradiation effects on diagnostic components’, presented at the ITER Technical Meeting of Irradiation Tests on Diagnostic Components based on the T246 Task Agreement, Garching, 20 June 1996.

    Google Scholar 

  11. Gorshkov, D. Orlinsky, V. Sannikov, K. Vukolov, S. Goncharov, Yu. Sadovnikov, A. Kirillov, Measurement of radioluminescence spectral intensity of the quartz glass under neutron and gamma pulse irradiation at Pulse Fission Reactor “BARS”, Paper given at ITER Diagnostics Progress Meeting, Garching, 15.–17. Jan. 1997.

    Google Scholar 

  12. A. B. Berlizov, O.V. Kachalov, A.R. Matesov, Sample RF W-T28-01, ITER R&D Task T28 ‘Irradiation Effects on Diagnostic Components’.

    Google Scholar 

  13. J.O. Porteus, D.L. Decker, S.C. Seitel, M.J. Soileau, Dependence of metal mirror damage thresholds on wavelength, material, pulse length and preparation method, in Laser Induced Damage in Optical Materials: 1980, NBS Special Publication 620, p. 201, Boulder (1980).

    Google Scholar 

  14. H.M. Musal, Thermomechanical stress degradation of metal mirror surfaces under pulsed laser irradiation, in Laser Induced Damage in Optical Materials: 1979, NBS Special Publication 568, p. 159, Boulder (1979)

    Google Scholar 

  15. H.M. Musal, Pulsed laser initiation of surface plasma on metal mirrors, in Laser Induced Damage in Optical Materials: 1980, NBS Special Publication 620, p. 227, Boulder (1980).

    Google Scholar 

  16. N. Koumvakalis, C.S. Lee, M. Bass, Single and multiple pulse catastrophic damage in diamond-turned Cu and Ag mirrors at 10.6, 1.06 and 0.532 μm, Optical Engineering 22:419 (1983).

    Article  ADS  Google Scholar 

  17. C.S. Lee, N. Koumvakalis, M. Bass, A theoretical model for multiple-pulse laser-induced damage to metal mirrors, J. Appl. Phys. 54:5727 (1983).

    Article  ADS  Google Scholar 

  18. Y. Jee, M.F. Becker, R.M. Walser, Laser-induced damage on single-crystal metal surfaces, J. Opt. Soc. Am. B 5:648 (1988).

    Article  ADS  Google Scholar 

  19. M.F. Becker, Chunchi Ma, R.M. Walser, Predicting multi-pulse laser-induced failure for molybdenum metal mirrors, Appl. Phys. 30:5239 (1991).

    Google Scholar 

  20. W. Eckstein, C. Garcia-Rosales, J. Roth, W. Ottenberger, Sputtering data, Report IPP 9/82 (1993).

    Google Scholar 

  21. M. Mayer, L. de Kock, CX erosion of mirrors, presented at the 4th Meeting of ITER Expert Group on Diagnostics, Moscow, 1 March 19%.

    Google Scholar 

  22. M.M. Miroshnikov, S.V. Lyubarskii, Yu.P. Khimich, Optical telescope mirrors, Sov. J. Opt. Technol. 57:523 (1990).

    Google Scholar 

  23. B. W. Brown, C. Gowers, P. Nielsen, B. Schunke, Window transmission monitoring and cleaning schemes used with the light detection and ranging Thomson scattering diagnostic on the JET tokamak’, Rev. Sei. Instrum. 66:3077 (1995).

    Article  ADS  Google Scholar 

  24. D. H. McNeill, Effect of changes in viewing window transmission on high-temperature Thomson scattering data, Rev. Sci. Instrum. 61:1263 (1990).

    Article  ADS  Google Scholar 

  25. H. Yoshida, O. Naito, T. Hatae, A. Nagashima, Approach to a window coating problem by in situ transmission monitoring and laser blow-off cleaning developed in the JT-60U Thomson scattering system, Rev. Sci. Instrum. 68:256 (1997).

    Article  ADS  Google Scholar 

  26. O.R.P. Smith, C. Gowers, P. Nielsen, H. Salzmann, A self-calibration technique for a Thomson scattering system, Rev. Sci. Instrum 68:725 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nielsen, P., de Kock, L., Gowers, C., Orsitto, F., Salzmann, H., Walker, C. (1998). LIDAR Thomson Scattering for the ITER Core Plasma. In: Stott, P.E., Gorini, G., Prandoni, P., Sindoni, E. (eds) Diagnostics for Experimental Thermonuclear Fusion Reactors 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5353-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5353-3_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7442-8

  • Online ISBN: 978-1-4615-5353-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics