Skip to main content

Surface-Modified Phospholipid-Stabilized Emulsions as Targeted Systems for Inhibition of Metastatic Cancer

  • Chapter
  • 334 Accesses

Abstract

It is now recognized that deaths from cancer are most frequently due to metastic development of the initial disease site, irrespective of the treatment or surgical extirpation of the primary tumor following diagnosis. The significant role played by fibronectin in the promotion and support of tumor cell migration from the primary cancer site to peripheral metastatic sites is well documented.1–6 Humphries7 pointed out that interference with the function of fibronection would probably inhibit the metastatic process and these authors identified a short peptidal fragment, GRGDS, that functioned in this manner. Unfortunately, the fragment was not stable and has a very short biological half life, requiring frequent administration of large quantities of the peptide.8 Later4 Humphries reported that both polymeric and cyclic peptides were also potent inhibitors of integrin-dependent adhesion and experimental metastasis models. Braatz et al.9 have also shown that a peptide containing the essential RGD peptide sequence retained its biological activity with an extended circulatory half-life when covalently bound to an isocyanate-containing polyurethane polymer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.K. Akiyama, K. Olden, and K.M. Yamada, 1995, Fibronectin and integrins in invasion and metastasis, Cancer and Metastasis Review 14(3): 173–189.

    Article  CAS  Google Scholar 

  2. S.K. Akiyama, K. Nagata, and K.M. Yamada, 1990, Cell surface receptors for extracellular matrix components, Biochim. Biophys. Acta 1031:91–110.

    Article  PubMed  CAS  Google Scholar 

  3. M.J. Humphries, 1990, The molecular basis and specificity of integrin-ligand interactions, J. Cell Sci 97:585–592.

    PubMed  CAS  Google Scholar 

  4. M.J. Humphries, 1993, Fibronectin and cancer: Rationales for the use of antiadhesive in cancer treatment, Cancer Biology 4:293–299.

    CAS  Google Scholar 

  5. R.O. Hynes, 1992, Integrins: Versatility, modulation and signaling in cell adhesion, Cell 69:11–25.

    Article  PubMed  CAS  Google Scholar 

  6. K.M. Yamada, 1991, Adhesive recognition sequences, J. Biol. Chem 266:12809–12812.

    PubMed  CAS  Google Scholar 

  7. M.J. Humphries, K. Olden, and K.M. Yamada, 1986, A synthetic peptide from fibronectin inhibitors experimental metastasis of murine melanoma cells, Science 233:467–470.

    Article  PubMed  CAS  Google Scholar 

  8. M.J. Humphries, K.M. Yamada, and K. Olden, 1988, Investigation of the biological effects of anti-cell adhesive synthetic peptides that inhibit experimental metastasis of B16-F10 melanoma cells, J. Clin. Invest 81:782–790.

    Article  PubMed  CAS  Google Scholar 

  9. J.A. Braatz, Y. Yasuda, K. Olden, K.M. Yamada, and A.H. Heifetz, 1993, Functional peptide-polyurethane conjugates with extended circulatory half lives, Bioconjug. Chem 4(4):262–267.

    Article  PubMed  CAS  Google Scholar 

  10. D.F. Mosher, 1980, Fibronectin, Prog. Hemostasis Thromb 5:111–151.

    CAS  Google Scholar 

  11. H. Forastieri, and K.C. Ingham, 1983, Fluid-phase interaction between human plasma fibronectin and gelatin determined by fluorescence polarization assay, Arch. Biochem. Biophys 227:358–366.

    Article  PubMed  CAS  Google Scholar 

  12. K.C. Ingham, S.A. Brew, and B.S. Isaacs, 1988, Interaction of fibronectin and its gelatin-binding domains with fluorescent-labeled chains of type I collagen, J. Biol. Chem 263(10):4624–4628.

    PubMed  CAS  Google Scholar 

  13. A. Garcia-Pardo, and L.I. Gold, 1993, Further characterization of the binding of fibronectin to gelatin reveals the presence of different binding interactions, Arch. Biochem. Biophys 304(1): 181–188.

    Article  PubMed  CAS  Google Scholar 

  14. K. Nakamura, S. Kashiwagi, and K. Takeo, 1992, Characterization of the interaction between human plasma fibronectin and collagen by means of affinity electrophoresis, J. Chromat 597:351–356.

    Article  CAS  Google Scholar 

  15. Y. Lou, W.P. Olson, X.X. Tian, M.E. Klegerman, and M.J. Groves, 1995, Interaction between fibronectin-bearing surfaces and Bacillus Calmette Guérin (BCG) or gelatin microparticles, J. Pharm. Pharmacol 47:177–181.

    Article  PubMed  CAS  Google Scholar 

  16. K. Nagata, M.J. Humphries, K. Olden, and K.M. Yamada, 1985, Collagen can modulate cell interactions with fibronectin, J. Cell Biol 101:386–394.

    Article  PubMed  CAS  Google Scholar 

  17. D.L. Heene, D. Zekorn, and H.G. Lasch, 1968, Gelatin plasma volume expanders: Chemistry, biological activities and clinical experiences, Proc. 11th Congr. Int. Soc. Blood Transf, Sydney 1966, Bibl. No. 29, Part 3, pp. 907–913, Karger, Basel, New York.

    Google Scholar 

  18. H.H. Schöne, 1960, Chemistry and physicochemical characterization of gelatin plasma substitutes, Modified Gelatin as Plasma Substitutes, Biol. Haemat, No. 33, pp. 78–90, Karger, Basel, New York.

    Google Scholar 

  19. D. Zekorn, 1969, Intravascular retention, dispersal, excretion and breakdown of gelatin plasma substitutes, Modified Gelatin as Plasma Substitutes, Biol. Haemat, No. 33, pp. 131–140, Karger, Basel, New York.

    Google Scholar 

  20. G. Brodin, F. Hesselvik, and H. von Schenck, 1984, Decrease of plasma fibronectin concentration following infusion of a gelatin-based plasma substitute in man, Scand. J. Clin. Lab. Invest 44:529–533.

    Article  PubMed  CAS  Google Scholar 

  21. J.M. Saddler, and P.J. Horsey, 1987, The new generation gelatins: A review of their history, manufacture and properties, Anesthesia 42:998–1004.

    Article  CAS  Google Scholar 

  22. J.M. Vedrinne, J.P. Hoen, D. Bussery, C. Veyssere, M. Richard, and J. Motin, 1991, Plasma fibronectin and complement following infusion of colloidal solutions after spinal anaesthesia, Intensive Care Med 17:83–86.

    Article  PubMed  CAS  Google Scholar 

  23. F.A. Blumenstock, P.L. Celle, A. Herrmannsdoerfer, C. Giunta, F.L. Minnear, E. Cho, and T.M. Saba, 1993, Hepatic removal of 125I-DLT gelatin after burn injury: A model of soluble collagenous debris that interacts with plasma fibronectin, J. Leukocyte Biol 54:56–64.

    PubMed  CAS  Google Scholar 

  24. X. Gao, 1996, Peptides derived from gelatin as vectors for potential cancer treatment, Ph.D. Thesis, University of Illinois at Chicago.

    Google Scholar 

  25. Y. Yamaguchi, and Y. Mizushima, 1994, Lipid microspheres for drug delivery from the pharmaceutical viewpoint, Critical Reviews in Therapeutic Drug Carrier Systems 11(4): 215–229.

    PubMed  CAS  Google Scholar 

  26. D.M. Lidgate, and N.E. Byars, 1995, Development of an emulsion-based muramyl dipeptide adjuvant formulation for vaccine, Pharm. Biotechnol 6:313–324.

    Article  PubMed  CAS  Google Scholar 

  27. P.K. Hansrani, S.S. Davis, and M.J. Groves, 1983, The preparation and properties of sterile intravenous emulsions, J. Parenteral Sci. & Technol 37:145–150.

    CAS  Google Scholar 

  28. H. Endoh, Y. Hashimoto, Y. Kawashima, and Y. Suzuki, 1980, Agglutination microassay of hapten-or protein-modified liposomes using a multiple cell culture harvester, J. Immunol. Methods 36:185–195.

    Article  PubMed  CAS  Google Scholar 

  29. H. Endoh, Y. Suzuki, and Y. Hashimoto, 1981, Antibody coating of liposomes with l-ethyl-3-(3-dimethyl-aminopropyl) carbodiimide and the effect on target specificity, 44:79–85.

    CAS  Google Scholar 

  30. J.S. Ellingson, and W.E.M. Lands, 1968, Phospholipid reactivation of plasmalogen metabolism, Lipids 3(2): 111–120.

    Article  PubMed  CAS  Google Scholar 

  31. M.E. Klegerman, P.L. Zeunert, Y. Lou, P.O. Devadoss, and M.J. Groves, 1993, Inhibition of murine sarcoma cell adherence to polystyrene substrata by Bacillus Calmette Guérin: Evidence for fibronectin-mediatiated direct antitumor activity of BCG, Cancer Invest 11(6):660–666.

    Article  PubMed  CAS  Google Scholar 

  32. F. Grinnel, D.G. Hays, and D. Minter, 1977, Cell adhesion and spreading factor: Partial purification and properties, Exp. Cell. Res 110:175–190.

    Article  Google Scholar 

  33. K.M. Yamada, and D.W. Kennedy, 1984, Dualistic nature of adhesive protein function: Fibronectin and its biologically active peptide fragments can autoinhibit fibronectin function, J. Cell. Biol 99:29–36.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Groves, M.J., Gao, X. (1998). Surface-Modified Phospholipid-Stabilized Emulsions as Targeted Systems for Inhibition of Metastatic Cancer. In: Hıncal, A.A., Kaş, H.S. (eds) Biomedical Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5349-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5349-6_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7440-4

  • Online ISBN: 978-1-4615-5349-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics