Skip to main content

Animal Models of Amyloid Aggregation and Deposition

  • Chapter
  • 26 Accesses

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 49))

Abstract

Amyloid was for more than a century considered to be an interesting, unique, but inconsequential tissue deposit which rarely caused significant clinical problems. We now recognize that there are many forms of amyloid. Amyloid represents a uniform organization of a disease-, or pathological process-, specific protein which is combined with a set of common structural components. Furthermore, amyloid is not the rare entity it was originally thought to be. It has become implicated in the pathogenesis of diseases which affect millions of patients. These range from common disorders such as Alzheimer’s diseases, adult-onset diabetes, and consequences of prolonged dialysis, to the historically recognized rare systemic forms associated with inflammation and plasma cell disturbances. Strong evidence is emerging that even when amyloid is deposited in local organ sites significant physiologic effects may ensue. By all criteria, such as scientific curiosity, incidence, medical importance, and commercial markets, amyloid has come of age.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Axelrad, M.A., Kisilevsky, R., Willmer, J., Chen, S.J., and Skinner, M., 1982, Further characterization of amyloid enhancing factor, Lab. Invest. 47:139–146.

    PubMed  CAS  Google Scholar 

  • Baltz, M.L., Caspi, D., Evans, D.J., Rowe, I.F., Hind, C.R.K., and Pepys, M.B., 1986, Ciculating amyloid P component is the precursor of amyloid P component in tissue amyloid deposits, Clin. Exp. Immunol. 66:691–700.

    PubMed  CAS  Google Scholar 

  • Benson, M.D., and Uemichi, T., 1996, Transthyretin amyloidosis, Amyloid 3:44–56.

    Article  CAS  Google Scholar 

  • Bons, N., Mestre, N., and Petter, A., 1992, Senile Plaques and Neurofibrillary Changes in the Brain of an Aged Le-murian Primate, Microcebus-Murinus, Neurobiol Aging 13:99–105.

    Article  PubMed  CAS  Google Scholar 

  • Breuer, W., Colbatzky, F., Platz, S., and Hermanns, W., 1993, Immunoglobulin-Producing Tumours in Dogs and Cats,J.Comp. Pathol. 109:203–216.

    Article  PubMed  CAS  Google Scholar 

  • Clark, A., Dekoning, E.JP., and Morris, J.F., 1993, Formation of Islet Amyloid from Islet Amyloid Polypeptide, Biochem. Soc. Trans. 21:169–176.

    PubMed  CAS  Google Scholar 

  • Colon, W., Lai, Z.H., Mccutchen, S.L., Miroy, G.J., Strang, C., and Kelly, J.W., 1996, FAP mutations destabilize transthyretin facilitating conformational changes required for amyloid formation, Ciba Foundation Symposium 199:228–242.

    PubMed  CAS  Google Scholar 

  • Cummings, B.J., Su, J.H., Cotman, C.W., White, R., and Russell, M.J., 1993, beta-Amyloid Accumulation in Aged Canine Brain-A Model of Early Plaque Formation in Alzheimer’s Disease, Neurobiol. Aging 14:547–560.

    Article  PubMed  CAS  Google Scholar 

  • Durie, B.G.M., Persky, B., Soehnlen, B.J., Grogan, T.M., and Salmon, S.E., 1982, Amyloid production in human myeloma stem-cell culture, with morphologic evidence of amyloid secretion by associated macrophages, N. Engl. J. Med. 307:1689–1692.

    Article  PubMed  CAS  Google Scholar 

  • Gallo, G., Wisniewski, T., Choi-Miura, N.H., Ghiso, J., and Frangione, B., 1994, Potential role of apolipoprotein-E in fibrillogenesis, Am. J. Pathol 145:526–530.

    PubMed  CAS  Google Scholar 

  • Gearing, M., Rebeck, G.W., Hyman, B.T., Tigges, J., and Mirra, S.S., 1994, Neuropathology and apolipoprotein E profile of aged chimpanzees: Implications for Alzheimer disease, Proc. Natl. Acad. Sci. USA 91:9382–9386.

    Article  PubMed  CAS  Google Scholar 

  • Ghetti, B., Piccardo, P., Frangione, B., Bugiani, O., Giaccone, G., Young, K., Prelli, F., Farlow, M.R., Dlouhy, S.R., and Tagliavini, F., 1996, Prion protein amyloidosis, Brain Pathol. 6:127–145.

    Article  PubMed  CAS  Google Scholar 

  • Graether, S.P., Young, I.D., and Kisilevsky, R., 1996, Early detection of inflammation-associated amyloid in murine spleen using thioflavin T fluorescence of spleen homogenates: Implications for amyloidogenesis, Amyloid 3:20–27.

    Article  CAS  Google Scholar 

  • Greenberg, B.D., Savage, M.J., Howland, D.S., Ali, S.M., Siedlak, S.L., Perry, G., Siman, R., and Scott, R.W., 1996, APP transgenesis: Approaches toward the development of animal models for Alzheimer disease neuropathology, Neurobiol. Aging 17:153–171.

    Article  PubMed  CAS  Google Scholar 

  • Hellman, U., Wernstedt, C., Westermark, P., Obrien, T.D., Rathbun, W.B., and Johnson, K.H., 1990, Amino Acid Sequence from Degu Islet Amyloid-Derived Insulin Shows Unique Sequence Characteristics, Biochem. Biophys. Res. Commun. 169:571–577.

    Article  PubMed  CAS  Google Scholar 

  • Higuchi, K., Yonezu, T., Kogishi, K., Matsumura, A., Takeshita, S., Higuchi, Ka., Kohno, A., Matsushita, M, Hosakawa, M., and Takeda, T., 1986a, Purification and characterization of a senile amyloid related anti-genic substance (apoSASsam) from mouse serum. ApoSASsam is an apoA-II apolipoprotein of mouse high density lipoproteins, J. Biol. Chem. 261:12834–12840.

    PubMed  CAS  Google Scholar 

  • Higuchi, K., Yonezu, T., Tsunasawa, S., Sakiyama, F., and Takeda, T., 1986b, The single proline-glutamine substitution at position 5 enhances the potency of amyloid fibril formation of murine apoA-II, FEBS Lett. 207:23–27.

    Article  PubMed  CAS  Google Scholar 

  • Higuchi, K., Naiki, H., Kitagawa, K., Hosokawa, M., and Takeda, T., 1991, Mouse Senile Amyloidosis-ASSAM Amyloidosis in Mice Presents Universally As a Systemic Age-Associated Amyloidosis, Virchows Arch. B Cell Pathol. 60:231–238.

    Article  CAS  Google Scholar 

  • Hsiao, K., Chapman, P., Nilsen, S., Eckman, C., Harigaya, Y., Younkin, S., Yang, F.S., and Cole, G., 1996, Correlative memory deficits, Aβ elevation, and amyloid plaques in transgenic mice, Science 274:99–102.

    Article  PubMed  CAS  Google Scholar 

  • Husby, G., 1994. Classification of Amyloidosis. In: Clinical Rheumatology: Vol.8 No.3, Reactive Amyloidosis and the Acute Phase Response, Husby, G., Ed., Bailiiere Tindall, London, pp. 503–511.

    Google Scholar 

  • Ikeda, S., Tokuda, T., Yanagtsawa, N., Kametani, F., Ohshima, T., and Allsop, D., 1994, Variability of beta-amyloid protein deposited lesions in Down’s syndrome brains, Tohoku J. Exp. Med. 174:189–198.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, K.H., Westermark, P., Sletten, K., and Obrien, T.D., 1996, Amyloid proteins and amyloidosis in domestic animals, Amyloid 3:270–289.

    Article  CAS  Google Scholar 

  • Kazatchkine, M.D., Husby, G., Araki, S., Benditt, E.P., Benson, M.D., Cohen, A.S., Frangione, B., Glenner, G.G., Natvig, J.B., and Westermark, P., 1993, Nomenclature of Amyloid and Amyloidosis-WHO-IUIS Nomenclature Sub-Committee, Bull. WHO 71:105–108.

    Google Scholar 

  • Kisilevsky, R., 1996, Anti-amyloid drugs: Potential in the treatment of diseases associated with aging, Drug Aging 8:75–83.

    Article  CAS  Google Scholar 

  • Kisilevsky, R., and Boudreau, L., 1983, The kinetics of amyloid deposition: I. The effect of amyloid enhancing factor and splenectomy, Lab. Invest. 48:53–59.

    PubMed  CAS  Google Scholar 

  • Kisilevsky, R., and Young, I.D., 1994. Pathogenesis of amyloidosis. In: Clinical Rheumatology: Vol.8 No.3, Reactive Amyloidosis and the Acute Phase Response, pp. 613–626. Husby, G., Ed., Bai liiere Tindall, London.

    Google Scholar 

  • Levy-Lahad, E., and Bird, T.D., 1996, Genetic factors in Alzheimer’s disease: A review of recent advances, Ann. Neurol. 40:829–840.

    Article  PubMed  CAS  Google Scholar 

  • Liepnieks, J.J., DiBartola, S.P., and Benson, M.D., 1996, Systemic immunoglobulin (AL) amyloidosis in a cat: Complete primary structure of a feline lambda light chain, Amyloid 3:177–182.

    Article  CAS  Google Scholar 

  • Linke, R.P., Geisel, O., and Mann, K., 1991, Equine Cutaneous Amyloidosis Derived from an Immunoglobulin lambda-Light Chain-Immunohistochemical, Immunochemical and Chemical Results, Biol. Chem. Hoppe-Seyler 372:835–843.

    Article  PubMed  CAS  Google Scholar 

  • Lorenzo, A., and Yankner, B.A., 1994, beta-amyloid neurotoxicity requires fibril formation and is inhibited by Congo red, Proc. Natl. Acad. Sci. USA 91:12243–12247.

    Article  PubMed  CAS  Google Scholar 

  • Lyon, A.W., Narindrasorasak, S., Young, I.D., Anastassiades, T., Couchman, J.R., McCarthy, K., and Kisilevsky, R., 1991, Co-deposition of basement membrane components during the induction of murine splenic AA amyloid, Lab. Invest. 64:785–790.

    PubMed  CAS  Google Scholar 

  • Martin, L.J., Sisodia, S.S., Koo, E.H., Cork, L.C., Dellovade, T.L., Weidemann, A., Beyreuther, K., Masters, C., and Price, D.L., 1991, Amyloid Precursor Protein in Aged Nonhuman Primates, Proc. Natl. Acad. Sci. USA 88:1461–1465.

    Article  PubMed  CAS  Google Scholar 

  • McCubbin, W.D., Kay, C.M., Narindrasorasak, S., and Kisilevsky, R., 1988, Circular dichroism and fluorescence studies on two murine serum amyloid A proteins, Biochem.J. 256:775–783.

    PubMed  CAS  Google Scholar 

  • McCutchen, S.L., Colon, W., and Kelly, J.W., 1993, Transthyretin Mutation Leu-55-Pro Significantly Alters Tetra-mer Stability and Increases Amyloidogenicity, Biochemistry 32:12119–12127.

    Article  PubMed  CAS  Google Scholar 

  • Nagata, Y, Tashiro, F., Yi, S., Murakami, T., Maeda, S., Takahashi, K., Shimada, K., Okamura, H., and Yamamura, K., 1995, A 6-kb upstream region of the human transthyretin gene can direct developmental, tissue-specific, and quantitatively normal expression in transgenic mouse, J. Biochem. Tokyo 117:169–17

    PubMed  CAS  Google Scholar 

  • Naiki, H., Higuchi, K., Yonezu, T., Hosokawa, M., and Takeda, T., 1988, Metabolism of Senile Amyloid Precursor and Amyloidogenesis: Age-related Acceleration of Apolipoprotein A-II Clearance in the Senescence Accelerated Mouse, Am. J. Pathol. 130:579–587.

    PubMed  CAS  Google Scholar 

  • Narindrasorasak, S., Altman, R.A., Gonzalez-DeWhitt, P., Greenberg, B.D., and Kisilevsky, R., 1995, An interaction between basement membrane and Alzheimer amyloid precursor proteins suggests a role in the pathogenesis of Alzheimer’s disease, Lab. Invest. 72:272–282.

    PubMed  CAS  Google Scholar 

  • Prusiner, S.B., 1996, Priori biology and diseases-Laughing cannibals, mad cows, and scientific heresy, Med. Res. Rev. 16:487–505.

    Article  PubMed  CAS  Google Scholar 

  • Prusiner, S.B., Telling, G., Cohen, F.E., and DeArmond, S.J., 1996, Prion diseases of humans and animals, Semin. Virol. 7:159–173.

    Article  CAS  Google Scholar 

  • Roses, A.D., 1996, The Alzheimer diseases, Curr. Opin. Neurobiol. 6:644–650.

    Article  PubMed  CAS  Google Scholar 

  • Saraiva, M.J.M., 1995, Transthyretin mutations in health and disease, Hum. Mutat. 5:191–196.

    Article  PubMed  CAS  Google Scholar 

  • Solomon, A., Weiss, D.T., and Pepys, M.B., 1992, Induction mice of human light-chain-associated amyloidosis, Am. J. Pathol. 140:629–637.

    PubMed  CAS  Google Scholar 

  • Tagouri, Y.M., Sanders, P.W., Picken, M.M., Siegal, G.P., Kerby, J.D., and Herrera, G.A., 1996, In vitro AL-Amy-loid formation by rat and human mesangial cells, Lab. Invest. 74:290–302.

    PubMed  CAS  Google Scholar 

  • Verchere, C.B., D’Alessio, D.A., Palmiter, R.D., Weir, G.C., Bonner-Weir, S., Baskin, D.G., and Kahn, S.E., 1996, Islet amyloid formation associated with hyperglycemia in transgenic mice with pancreatic beta cell expression of human islet amyloid polypeptide, Proc. Natl. Acad. Sci. USA 93:3492–3496.

    Article  PubMed  CAS  Google Scholar 

  • Westermark, P., Engstrom, U., Johnson, K.H., Westermark, G.T., and Betsholtz, C., 1990, Islet Amyloid Polypeptide-Pinpointing Amino Acid Residues Linked to Amyloid Fibril Formation, Proc. Natl. Acad. Sci. USA 87:5036–5040.

    Article  PubMed  CAS  Google Scholar 

  • Yamamura, K., Tashiro, F., Yi, S., Wakasugi, S., Araki, S., Maeda, S., and Shimada, K., 1993, Transgenic Mouse Model for Human Genetic Diseases, Mol. Reprod. Dev. 36:248–250.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kisilevsky, R. (1998). Animal Models of Amyloid Aggregation and Deposition. In: Fisher, A., Hanin, I., Yoshida, M. (eds) Progress in Alzheimer’s and Parkinson’s Diseases. Advances in Behavioral Biology, vol 49. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5337-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5337-3_31

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7435-0

  • Online ISBN: 978-1-4615-5337-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics