Skip to main content

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 49))

  • 26 Accesses

Abstract

Amyloidosis is defined as the cascade of structural changes of proteins leading to the formation of insoluble fibril aggregates that accumulate in tissue as amyloid plaques. All types of amyloidosis are structurally characterized by the cross β-pleated sheet conformation of the fibrils irrespective of their biochemical composition (reviewed by Glenner, 1980). This common structural feature of fibril aggregates is the basis of their insolubility and relative resistance to proteolytic digestion (Jarrett and Lansbury, 1993; Nordstedt et al., 1994). Amyloid plaque formation and deposition is believed to be the key event in nerve cell death in chronic and incurable neurodegenerative diseases such as Alzheimer’s Disease (AD) (reviewed by Scikoe, 1996) and Creutzfeldt-Jakob Disease (CJD) (reviewed by Prusiner, 1996). One of the major therapeutic approaches to arrest, or at least slow down the progression of these devastating diseases, is to stop proteins from aggregating into amyloid fibrils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Chartier-Harlin, M.C., Crawford, F., Houlden, H., Warren, A., Hughes, D., Fidani, L., Goate, A., Rossor, M., Roques, P., Hardy, J., and Mullan, M., 1991, Early-onset Alzheimer’s Disease caused by mutations at codon 717 of the β-Amyloid Precursor Protein gene. Nature 353:844–846.

    Article  PubMed  CAS  Google Scholar 

  • Citron, M., Oltersdorf, T., Haass, C., McConlogue, L., Hung, A.Y., Seubert, P., Vigo-Pelfrey, C., Lieberburg, I., and Scikoe D.J., 1992, Mutation of the β-Amyloid Precursor Protein in familial Alzheimer’s Disease increases β-protein production. Nature 360:672–674.

    Article  PubMed  CAS  Google Scholar 

  • Cummings, B.J., Pike, C.J., Shankle, R., and Cotman, C.W., 1996, β-Amyloid deposition and other measures of neuropathology predict cognitive status in Alzheimer’s Disease. Neurobiol. Aging 17(6), 921–933.

    Article  PubMed  CAS  Google Scholar 

  • Forloni, G., Angeretti, N., Chiesa, R., Monzani, E., Salmona, M, Bugiani, O., and Tagliavini, F., 1993, Neuro-toxicity of a prion protein fragment. Nature 362:543–546.

    Article  PubMed  CAS  Google Scholar 

  • Forloni, G., Del Bo, R., Angeretti, N., Chiesa, R., Smiroldo, S., Doni, R., Ghibaudi, A., Salmona, M., Porro, M., Verga, L., Giaccone, G., Bugiani, O., and Tagliavini, F., 1994, A neurotoxic prion protein fragment induces rat astroglial proliferation and hypertrophy. EurJ.Neurosci. 6:1415–1422.

    Article  CAS  Google Scholar 

  • Games, D., Adams, D., Alessandrini, R., Barbour, R., Berthelette, P., Blackwell, C., Carr, T., Clemens, J., Donaldson, T., Gillespie, F., Guido, T., Hagoplan, S., Johnson-Wood, K., Khan, K., Lee, M, Leibowitz, P., Lieder-burg, I., Little, S., Masliah, E., McConlogue, L., Montoya-Zavala, M., Mucke, L., Paganini, L., Penniman, E., Power, M., Schenk, D., Seubert, P., Snyder, B., Soriano, F., Tan, H., Vitale, J., Wadsworth, S., Wolozin, B., and Zhao, J., 1995, Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-Amyloid Precursor Protein. Nature 373:523–527.

    Article  PubMed  CAS  Google Scholar 

  • Ghetti, B., Piccardo, P., Frangione, B., Bugiani, O., Giaccone, G., Young, K., Prelli, F., Farlow, M.R., Dlouhy, R., and Tagliavini, F., 1996, Prion protein amyloidosis. Brain Pathol. 6:127–145.

    Article  PubMed  CAS  Google Scholar 

  • Giaccone, G., Tagliavini, F., Lindoli, G., Bouras, C., Frigerio, L., Frangione, B., and Bugiani, O., 1989, Down Patients: extracellular preamyloid deposits precede neuritic degeneration and senile plaques. Neurosci.Lett. 97:232–238.

    Article  PubMed  CAS  Google Scholar 

  • Gianni, L., Bellotti, V., Gianni, A.M., and Merlini, G.P., 1995, New drug therapy of amyloidosis: Resorption of AL-type deposits with 4′-iodo-4′-deoxydoxorubicin. Blood 3:855–861.

    Google Scholar 

  • Glenner, G.G., 1980, Amyloid deposits and amyloidosis (First part). NewEngl. J. Med. 302(23): 1283–1292.

    Article  CAS  Google Scholar 

  • Glenner, G.G., 1980, Amyloid deposits and amyloidosis (Second part). NewEngl. J. Med. 302(24): 1333–1343.

    Article  CAS  Google Scholar 

  • Glenner, G.G., and Wong, C.W., 1984, Alzheimer’s Disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem.Biophys. Res.Comm. 120(3):885–890.

    Article  PubMed  CAS  Google Scholar 

  • Goate, A., Chartier-Harlin, M.C., Mullan, M., Brown, J., Crawford, F., Fidani, L., Giuffra, L., Haynes, A., Irving, N., James, L., Mant, R., Newton, P., Rooke, K., Roques, P., Talbot, C., Pericak-Vance, M., Roses, A., Williamson, R., Rossor, M., Owen, M., and Hardy, J., 1991, Segregation of a missence mutation in the Amyloid Precursor Protein gene with Familial Alzheimer’s Disease. Nature 349:704–707.

    Article  PubMed  CAS  Google Scholar 

  • Haass, C., Hung, A.Y., Scikoe, D.J., and Teplow D.B., 1994, Mutations associated with a locus for Familial Alzheimer’s Disease result in alternative processing of Amyloid-β Protein Precursor. J.Biol.Chem. 269: 17741–17748.

    PubMed  CAS  Google Scholar 

  • Jarrett, J.L., and Lansbury, P.T. Jr., 1993, Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer’s Disease and scrapie? Cell 73:1055–1058.

    Article  PubMed  CAS  Google Scholar 

  • Hsiao, K., Chapman, P., Nilsen, S., Eckman, C., Harigaya, Y., Younkin, S., Yang, F., and Cole, G., 1996, Correlative memory deficits, Aβ elevation, and amyloid plaques in transgenic mice. Science 274:99–102.

    Article  PubMed  CAS  Google Scholar 

  • Masters, C.L., Simms, G., Weinman, N.A., Multhaup, G., McDonald, B.L., and Beyreuther, K., 1985, Amyloid plaque core protein in Alzheimer Disease and Down Syndrome. Proc. Natl. Acad. Sci. USA, 82:4245–4249.

    Article  PubMed  CAS  Google Scholar 

  • Merlini, G.P., Ascari, E., Amboldi, N., Bellotti, V., Arbastini, E., Perfetti, V., Ferrari, M., Zorzoli, I., Marinone, M.G., Garini, P., Diegoli, M., Trizio D., and Ballinari, D., 1995, Interaction of the anthracycline 4′-Iodo-4′-deoxydoxorubicin with amyloid fibrils: inhibition of amyloidogenesis. Proc. Natl Acad. Sci. USA, 92:2959–2963.

    Article  PubMed  CAS  Google Scholar 

  • Mullan, M., Crawford, F., Axelman, K., Houlden, H., Lillius, L., Winblad, B., and Lannfelt, L., 1992, A pathogenic mutation for probable Alzheimer’s Disease in the APP gene at the N-terminus of β-amyloid. Nat. Genet 1:345–347.

    Article  PubMed  CAS  Google Scholar 

  • Nordstedt, C., Näslund, J., Tjernberg, L.O., Karlström, A.R., Thyberg, J., and Terenius, L., 1994, The Alzheimer Aβ peptide develops protease resistance in association with its polymerization into fibrils, J. Biol Chem. 269(49), 30773–30776.

    PubMed  CAS  Google Scholar 

  • Pike, C.J., Burdick, D., Walencewicz, A.J., Glabe, C.G., and Cotman, C.W., 1993, Neurodegeneration induced by β-amyloid peptides in vitro: the role of peptide assembly state. J. Neurosci. 13:1676–1687.

    PubMed  CAS  Google Scholar 

  • Price, D.L., Sisodia, S.S., and Gandy, S.E., 1995, Amyloid beta amyloidosis in Alzheimer’s Disease. Curr. Opin. Neurol 8:268–274.

    Article  PubMed  CAS  Google Scholar 

  • Prusiner, S.B., McKinley, M.P., Bowman, K.A., Bolton, D.C., Bendeheim, B.E., Groth, D.F., and Glenner G.G., 1983, Scrapie prion aggregate to form amyloid-like birefringent rods. Cell 35:349–358.

    Article  PubMed  CAS  Google Scholar 

  • Prusiner, S.B., 1991, Molecular biology of prion diseases. Science 251:1515–1522.

    Article  Google Scholar 

  • Prusiner, S.B., 1996, Prion biology and Diseases’Laughing cannibals, mad cows, and scientific heresy. Med. Res. Rev. 16(5):487–505.

    Article  PubMed  CAS  Google Scholar 

  • Rumble, B., Retallack, R., Hilbich, C., Simms, G., Multhaup, G., Martins, R., Hockey, A., Montgomery, P., Beyreuther, K., and Masters, C.L., 1989, Amyloid A4 protein and its precursor in Down’s Syndrome and Alzheimer’s Disease. N Engl. J. Med. 320:1446–1452.

    Article  PubMed  CAS  Google Scholar 

  • Scheuner, D., Eckman, C, Jensen, M., Song, X., Citron, M., Suzuki, N., Bird, T.D., Hardy, J., Hutton, M., Kukull, W., Larson, E., Levy-Lahad, E., Viitanen, M., Peskind, E., Poorkaj, P., Schellenberg, G., Tanzi, R., Wasco, W., Lannfelt, L., Scikoe, D., and Younkin, S., 1996, Secreted amyloid β-protein similar to that in the senile plaques of Alzheimer’s Disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to Familial Alzheimer’s Disease. Nat. Med. 2(8):864–869.

    Article  PubMed  CAS  Google Scholar 

  • Scikoe, D.J., 1991, The molecular pathology of Alzheimer’s Disease. Neuron 6:487–488.

    Article  Google Scholar 

  • Scikoe, D.J., 1996, Amyloid β-protein and the genetics of Alzheimer’s Disease. J. Biol. Chem. 271(31), 18295–18298.

    Google Scholar 

  • Suzuki, N., Cheung, T.T., Cai, X.D., Odaka, A., Otvos, L. Jr., Eckman C., Golde, T.E., and Younkin, S.G., 1994, An increased percentage of long amyloid-β protein secreted by Familial Amyloid-β Precursor Protein (βAPP717) mutants. Science 264:1336–1340.

    Article  PubMed  CAS  Google Scholar 

  • Tagliavini, F., McArthur, R.A., Canciani, B., Giaccone, G., Porro, M., Bugiani, M., Lievens, P.M., Bugiani, O., Peri, E., Dall’Ara, P., Rocchi, M., Poli, G., Forloni, G., Bandiera, T., Varasi, M., Suarato, A., Cassutti, P., Cervini, M.A., Lansen, J., Salmona, M., and Post, C., 1997, Effectiveness of anthracycline against experimental Prion Disease in Syrian Hamsters. Science 276:1119–1122.

    Article  PubMed  CAS  Google Scholar 

  • Tanzi, R.E., Kovacs, D.M., Kim, T.W., Moir, R.D., Guenette, S.Y., and Wasco, W., 1996, The Presenelin Genes and their Roler in Early-Onset Familial Alzheimer’s Disease. Alz. Dis. Rev. 1:91–98.

    CAS  Google Scholar 

  • Wisniesky, H.M., and Terry, R.D., 1973, Reexamination of the pathogenesis of the senile plaques. Prog. Neuropathol. 11:1–26.

    Google Scholar 

  • Wisniesky, H.M., Morets, R.C., Lossinsky, A.S., 1981, Evidence for induction of localized amyloid deposits and neuritic plaques by an infectious agent. Ann. Neurol. 10:517–522.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Post, C. et al. (1998). Anthracyclines and Amyloidosis. In: Fisher, A., Hanin, I., Yoshida, M. (eds) Progress in Alzheimer’s and Parkinson’s Diseases. Advances in Behavioral Biology, vol 49. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5337-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5337-3_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7435-0

  • Online ISBN: 978-1-4615-5337-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics