Skip to main content

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 49))

  • 27 Accesses

Abstract

The central core of the hypothesis underlying the present chapter is that terminally differentiated cells like neurons that have irreversibly exited the cell cycle have acquired programmed cell death (apoptosis) as an alternative effector pathway. This pathway may be activated in response to molecular events that lead to transformation of dividing stem cell populations. For example, alterations of those genes that can cause transformation in dividing cell populations, can cause apoptosis of terminally differentiated neurons. Up to now, it is quite evident that apoptosis is an important component in many progressive and acute neurodegenerative diseases. The extracellular signals as well as the intracellular mechanisms inducing and regulating apoptosis (or different types of apoptosis) of neuronal cells are still a matter of investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acharya, S., Wilson, T., Gradia, S., Kane, M.F., Guerrette, S., Marsischky, G.T., Kolodner, R., and Fishel, R., 1996, hMSH2 forms specific mispair-binding complexes with hMSH3 and hMSH6. Proc. Natl. Acad. Sci. U.S.A. 93:13629–13634.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, A.J., Su, J.H., and Cotman, C.W., 1996, DNA damage and apoptosis in Alzheimer’s disease: colocaliza-tion with c-Jun immunoreactivity, relationship to brain area, and effect of postmortem delay. J. Neurosci. 16(5):1710–1719.

    PubMed  CAS  Google Scholar 

  • Barak, Y., Juven, T., Haffine, R. and Oren, M., 1993, mdm2 expression is induced by wild-type p53 activity. EMBOJ. 12:461–468.

    CAS  Google Scholar 

  • Belloni, M., Uberti, D., Rizzini, C., Spano, P.F., and Memo. M., 1997, Expression of the DNA mismatch repair protein MSH2 in rat brain and primary neurons: induction by excitatory aminoacids. (Submitted for publication).

    Google Scholar 

  • Boerrigter, M.E.T.I., Wei, J.Y., and Vijg, J., 1992, DNA repair and Alzheimer’s disease. J Gerontol. 47(6):B177–B184.

    Article  PubMed  CAS  Google Scholar 

  • Brooks, P.J., Marietta, C., and Goldman, D., 1996, DNA mismatch repair and DNA methylation in adult brain neurons. J. Neurosci. 16(3):939–945.

    PubMed  CAS  Google Scholar 

  • Didier, M., Bursztajn, S., Adamec, E., Passani, L., Nixon, RA., Coyle, JT., Wei, JY, and Berman, SA., 1996, DNA strand breaks induced by sustained glutamate excitatotoxicity in primary neuronal cultures. J. Neurosci. 16:2238–2250.

    PubMed  CAS  Google Scholar 

  • Donehover, L.A., Harvey, M., Slagle, B.L., McArthur, M.J., Montgomery Jr., CA., Butel, J.S. and Bradley, A., 1992, Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356:215–221.

    Article  Google Scholar 

  • Dragunow, M., 1995, Ref-1 expression in adult mammalian neurons and astrocytes. Neurosci. Lett. 191:189–192.

    Article  PubMed  CAS  Google Scholar 

  • Duguid, J.R., Bohmot, C.W., Liu, N., and Tourtellotte, W.W., 1989, Changes in brain gene expression shared by scrapie and Alzheimer’s disease. Proc. Natl. Acad. Sci. U.S.A. 86:7260–7264.

    Article  PubMed  CAS  Google Scholar 

  • Eizenberg, O., Faber-Elman, A., Gottlier, E., Oren, M., Rotter, V, and Schwartz, M., 1996, p53 plays a regulatory role in differentiation and apoptosis of central nervous system-associated cells. Mol. CellBiol. 16:5178–5185.

    CAS  Google Scholar 

  • El-Deiry, W.S., Tokino, T., Veculescu, V.E., Levy, D.B., Parsons, R., Trent, J.M., Lin, D., Mercer, W.E., Kinzler, K.W., and Vogelstein, B., 1993, WAF1, a potent mediator of p53 tumor suppression. Cell. 75:817–825.

    Article  PubMed  CAS  Google Scholar 

  • Enokido, Y., Araki, T., Tanaka, K., and Hatanaka, H., 1996, Involvement of p53 in DNA strand break-induced apoptosis in postmitotic CNS neurons. Eur. J. Neurosci. 8:1812–1821.

    Article  PubMed  CAS  Google Scholar 

  • Evans, D.A.P., Burbach, J.P.H., Swaab, D.F., and van Leeuwen, F.W., 1996, Mutant vasopressin precursors in the human hypothalamus: evidence for neuronal somatic mutations in man. Neuroscience. 71(4): 1025–1030.

    Article  PubMed  CAS  Google Scholar 

  • Friedberg, E.C., 1985, DNA repair. Freeman, W.H., New York.

    Google Scholar 

  • Grilli, M., Goffi, F., Memo, M., and Spano, P.F., 1996a, Interleukin-lβ and glutamate activate the NF-κB/Rel binding site from the regulatory region of the amyloid precursor protein gene in primary neuronal cultures. J. Biol. Chem. 271:15002–15007.

    Article  PubMed  CAS  Google Scholar 

  • Grilli, M., Pizzi, M., Memo, M., and Spano, P.F., 1996b, A novel property for aspirin and sodium salicylate: neuroprotection through blockade of NF-κB activation. Science. 274:983–1985.

    Article  Google Scholar 

  • Grilli, M., and Memo, M., 1997, Transcriptional pharmacology of neurodegenerative disorders: novel venue towards neuroprotection against excitotoxicity? Mol.Psychiatry 2:192–195.

    Article  PubMed  CAS  Google Scholar 

  • Guerrini, L., Blasi, F., and Denis-Donini, S., 1995, Synaptic activation of NF-κB by glutamate in cerebellar granule neurons in vitro. Proc. Natl. Acad. Sci. USA 92: 9077–9081.

    Article  PubMed  CAS  Google Scholar 

  • Habraken, Y., Sung, P., Prakash, L., and Prakash, S., 1996, Binding of insertion/deletion DNA mismatches by the heterodimer of yeast mismatch repair proteins MSH2 and MSH3. Curr. Biol. 6(9): 1185–1187.

    Article  PubMed  CAS  Google Scholar 

  • Jayaraman, JL., and Prives, C., 1995, Activation of p53 sequence-specific DNA binding by short single strand of DNA requires the p53 C-terminus. Cell. 81:1021–1029.

    Article  PubMed  CAS  Google Scholar 

  • Kaltschmidt, C., Kaltschmidt, B. Neumann, H., Wekerle, H., and Baeuerle, P. A., 1994, Constitutive NF&B activity in neurons. Mol. Cell. Biol. 14:3981–3992.

    PubMed  CAS  Google Scholar 

  • Kastan, M.B., Zhan, Q., El-Deiry, W.S., Carrier, F., Jacks, T., Walsh. W.V., Plunkett, B.S., Vogelstein, B., and Forance, A.J., 1992, A mammalian cell cycle check point pathway utilizing p53 and GADD45 is defective in ataxia-teleangectasia. Cell. 71:587–597.

    Article  PubMed  CAS  Google Scholar 

  • Kolodner, R.D., 1995, Mismatch repair: mechanisms and relationship to cancer susceptibility. Trends in Biochem. Sci. 20:397–401.

    Article  CAS  Google Scholar 

  • Kunkel, T.A., 1995, The intricacies of eukaryotic spell-checking. Curr. Biol. 5(10): 1091–1094.

    Article  PubMed  CAS  Google Scholar 

  • Lane, D.P., 1992, Cancer. p53, guardian of the genome. Nature 358:15–16.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S., Elenbaas, B., Levine, A., and Griffith, J., 1995, p53 and its 14 kDa C-terminus domain recognize primary DNA damage in the form of insertion/deletion mismatches. Cell. 81:1013–1020.

    Article  PubMed  CAS  Google Scholar 

  • Li, Y., Chopp, M., Zhang, ZG., Zaloga, C., Neiwenhuis, L., and Gautam, S., 1994, p53-immunoreactive protein and p53 mRNA expression after transient middle cerebral artery occlusion in rats. Stroke 25:849–855.

    Article  PubMed  CAS  Google Scholar 

  • Lipton, S.A., and Rosemberg, P.A., 1994, Excitatory aminoacids as a final common pathway for neurologic disorders. N. Engl. J. Med. 330(9):613–622.

    Article  PubMed  CAS  Google Scholar 

  • Liu, P.K., Hsu, C.Y, Dizdaroglu, M., Floyd, R.A., Kow, Y.W., Karakaya, A., Rabow, L.E., and Cui, J-K., 1996, Damage, repair, and mutagenesis in nuclear genes after mouse forebrain ischemia-reperfusion. J. Neurosci. 16(21):6795–6806.

    PubMed  CAS  Google Scholar 

  • Mazzarello, P., Poloni, M., Spadari, S., and Focher, F., 1992, DNA repair mechanism in neurological diseases: facts and hypotheses. J. Neurol. Sci. 112:4–14.

    Article  PubMed  CAS  Google Scholar 

  • Myashita, T., Karjewska, S., Krajewska, M., Wang, H.C., Lin, H.K., Liebermann, D.A., Hoffman, B., and Reed, J.C., 1994, Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. On-cogene. 9:1799–1805.

    Google Scholar 

  • Modrich, P., 1991, Mechanisms and biological effects of mismatch repair. Ann. Rev. Genet. 25:229–253.

    Article  PubMed  CAS  Google Scholar 

  • Morrison, R.S., Wenzel, H.J., Kinoshita, Y., Robbins, C.A., Donehower, L.A., and Schwartzkroin, P.A., 1996, Loss of the p53 tumor suppressor gene protects neurons from kainate-induced cell death. J. Neurosci. 16:1337–1345.

    PubMed  CAS  Google Scholar 

  • Ono, Y, Watanabe, M., Inoue, Y., Ohmoto, T., Akiyama, K., Tsutsui, K., and Seki, S., 1995, Developmental expression of APEX nuclease, a multifunctional DNA repair enzyme, in mouse brains. Dev. Brain. Res. 86:1–6.

    Article  CAS  Google Scholar 

  • Palombo, F., Hughes, M., Jiricny, J., Truong, O., and Hsuan, J., 1994, Mismatch repair and cancer .Nature (Lon.) 367:417–418.

    Article  CAS  Google Scholar 

  • Pellegata, N.S., Antoniono, R.J., Redpath, J.L., and Stanbridge, E.J., 1996, DNA damage and p53-mediated cell cycle arrest: a reevaluation. Proc. Natl. Acad. Sci. U.S.A. 93:15209–15214.

    Article  PubMed  CAS  Google Scholar 

  • Portera-Cailliau, C., Hedreen, J.C., Price, D.L., and Koliatsos, V.E., 1995, Evidence of apoptotic cell death in Huntington diseases and an excitotoxic animal model. J. Neurosci. 15:3775–3787.

    PubMed  CAS  Google Scholar 

  • Robbins, J.H., Otsuka, F., Tarone, R.E., Poltnsky, R.J., Brumback, R.A., Nee, L.E., 1985, Parkinson’s disease and Alzheimer’s disease: hypersensitivity to X rays in cultured cell lines. J. Neurol. Neurosurg. Psychiatry 48: 916–923.

    Article  PubMed  CAS  Google Scholar 

  • Sakhi, S., Bruce, A., Sun, N., Tocco, G., Baudry, M., and Schreiber, SS., 1994, p53 induction is associated with neuronal damage in the central nervous system. Proc. Natl. Acad. Sci. USA. 89:12028–12032.

    Google Scholar 

  • Scherer, S., Welter, C., Zang, KD., and Dooley S., 1996, Specific in vitro binding of p53 to the promoter region of the human mismatch repair hMSH2. Biochem. Biophys. Res. Commun. 221:722–728.

    Article  PubMed  CAS  Google Scholar 

  • Srivastava, S., Zou, Z., Pirollo, K., Blattner, W., and Chang, E.H., 1990, Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li-Fraumeni syndrome. Nature 348:747–749.

    Article  PubMed  CAS  Google Scholar 

  • Uberti, D., Belloni, M., Grilli, M., Spano, P.F., and Memo. M., 1997, Induction of tumour suppressor phosphopro-tein p53 in the apoptosis of cultured rat cerebellar neurons triggered by excitatory aminoacids. Eur. J. Neurosci., in press.

    Google Scholar 

  • Walker A.P., and Bachelard H.S., 1988, Studies on DNA damage and repair in the mammalian brain. J. Neuro-chem. 51:1394–1399.

    CAS  Google Scholar 

  • Wiebauer, K., and Jirikny, J., 1990, Mismatch-specific thymine DNA glycosylase and DNA polymerase beta mediate the correction of G-T mispairs in nuclear extracts from human cells. Proc. Natl. Acad. Sci. U.S.A. 87:5842–5845.

    Article  PubMed  CAS  Google Scholar 

  • Wu, H., and Lozano, G., 1994, NF-03BA;B activation of p53. A potential mechanism for suppressing cell growth in response to stress. J. Biol Chem. 269:20067–20074.

    PubMed  CAS  Google Scholar 

  • Xiang, H., Hochman, D.W., Saya, H., Fujiwara, T., Schwartzkroin, P.A., and Morrison, R.S., 1996, Evidence for p53-mediated modulation of neuronal viability. J. Neurosci. 16:6753–6765.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Uberti, D. et al. (1998). Common Mechanisms in Cell Cycle and Cell Death. In: Fisher, A., Hanin, I., Yoshida, M. (eds) Progress in Alzheimer’s and Parkinson’s Diseases. Advances in Behavioral Biology, vol 49. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5337-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5337-3_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7435-0

  • Online ISBN: 978-1-4615-5337-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics