Skip to main content

Getting to Grips with Neuronal Diversity

What is a Neuronal Type?

  • Chapter
Development and Organization of the Retina

Part of the book series: NATO ASI Series ((NSSA,volume 299))

Abstract

The concept of a neuronal type can be quite slippery. Just when you think you’ve got it in hand, it can jump out of your grasp like the soap in the shower. This probably explains why so many articles in recent years have claimed to address the molecular mechanisms that generate retinal diversity and yet have ended up focusing on just a few of its many neuronal types. The aim of this article is to set out the problems inherent in the concept of a neuronal type and discuss some of the ways in which a particular kind of spatial organization, the neuronal mosaic, can provide a tool to get to grips with it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ammermüller, J. and Kolb, H., 1995, The organization of the turtle inner retina. I. ON-and OFF-center pathways. J. Comp. Neurol. 358: 1–34.

    Article  PubMed  Google Scholar 

  • Asenjo, A.B., Rim, J. and Oprian, D.D., 1994, Molecular determinants of human red/green color discrimination. Neuron 12: 1131–1138.

    Article  PubMed  CAS  Google Scholar 

  • Becker, D.L. and Davies, C.S., 1995, Gap junctions in the mouse embryo. Microsc. Res. Tech. 31: 364–374.

    Article  PubMed  CAS  Google Scholar 

  • Bloomfield, S.A. and Hitchcock, P.F., 1991, Dendritic arbors of large-field ganglion cells show scaled growth during expansion of the goldfish retina: a study of morphometric and electrotonic properties. J. Neurosci. 11: 910–917.

    PubMed  CAS  Google Scholar 

  • Bloomfield, S.A. and Xin, D., 1994, Relationship between receptive field and tracer-coupling size of amacrine and ganglion cells in the rabbit retina. Invest. Ophthalmol. Vis. Sci. 35: 1822.

    Google Scholar 

  • Bloomfield, S.A., Xin, D. and Persky, S.E., 1995, A comparison of receptive field and tracer coupling size of horizontal cells in the rabbit retina. Visual Neurosci. 12: 985–999.

    Article  CAS  Google Scholar 

  • Bloomfield, S.A., Xin, D. and Osborne, T., 1997, Light-induced modulation of coupling between AII amacrine cells in the rabbit retina. Visual Neurosci. 14: 565–576.

    Article  CAS  Google Scholar 

  • Bowers, C.W., 1994, Superfluous neurotransmitters? Trends Neurosci. 17: 315–320.

    Article  PubMed  CAS  Google Scholar 

  • Boycott, B.B. and Wässle, H., 1974, The morphological types of ganglion cells of the domestic cat’s retina. J. Physiol. (Lond.) 240: 397–419.

    CAS  Google Scholar 

  • Boycott, B.B. and Wässle, H., 1991, Morphological classification of bipolar cells of the primate retina. Eur. J. Neurosci. 3: 1069–1088.

    Article  PubMed  Google Scholar 

  • Cook, J.E., 1996, Spatial properties of retinal mosaics: an empirical evaluation of some existing measures. Visual Neurosci. 13: 15–30.

    Article  CAS  Google Scholar 

  • Cook, J.E. and Becker, D.L., 1991, Regular mosaics of large displaced and non-displaced ganglion cells in the retina of a cichlid fish. J. Comp. Neurol. 306: 668–684.

    Article  PubMed  CAS  Google Scholar 

  • Cook, J.E. and Becker, D.L., 1995, Gap junctions in the vertebrate retina. Microsc. Res. Tech. 31: 408–419.

    Article  PubMed  CAS  Google Scholar 

  • Cook, J.E. and Noden, A.J., 1997, Somatic and dendritic mosaics formed by large ganglion cells in the retina of the common house gecko (Hemidactylus frenatus). Brain, Behav. Evol., in press.

    Google Scholar 

  • Cook, J.E. and Sharma, S.C., 1995, Large retinal ganglion cells in the channel catfish, Ictalurus punctatus: three types with distinct dendritic stratification patterns form similar but independent mosaics. J. Comp. Neurol. 362:331–349.

    Article  PubMed  CAS  Google Scholar 

  • Cook, J.E., Becker, D.L. and Kapila, R., 1992, Independent mosaics of large inner-and outer-stratified ganglion cells in the goldfish retina. J. Comp. Neurol. 318: 355–366.

    Article  PubMed  CAS  Google Scholar 

  • Cook, J.E., Kondrashev, S.L. and Podugolnikova, T.A., 1996, Biplexiform ganglion cells, characterized by dendrites in both outer and inner plexiform layers, are regular mosaic-forming elements of the teleost fish retina. Visual Neurosci. 13: 517–528.

    Article  CAS  Google Scholar 

  • Dacey, D.M. and Brace, S., 1992, A coupled network for parasol but not midget ganglion cells in the primate retina. Visual Neurosci. 9: 279–290.

    Article  CAS  Google Scholar 

  • Dunn-Meynell, A.A. and Sharma, S.C., 1986, The visual system of the channel catfish (Ictalurus punctatus). I. Retinal ganglion cell morphology. J. Comp. Neurol. 247: 32–55.

    Article  PubMed  CAS  Google Scholar 

  • Euler, T. and Wässle, H., 1995, Immunocytochemical identification of cone bipolar cells in the rat retina. J. Comp. Neurol. 361:461–478.

    Article  PubMed  CAS  Google Scholar 

  • Frank, B.D. and Hollyfield, J.G., 1987, Retinal ganglion cell morphology in the frog, Rana pipiens. J. Comp. Neurol. 266: 413–434.

    Article  PubMed  CAS  Google Scholar 

  • Fritzsch, B., 1991, Ontogenetic clues to the phylogeny of the visual system. In ‘The Changing Visual System’, Eds. R. Bagnoli and W. Hodos. Plenum Press, London, pp. 33–49.

    Chapter  Google Scholar 

  • Gaze, R.M. and Grant, P., 1992, Spatio-temporal patterns of retinal ganglion cell death during Xenopus development. J. Comp. Neurol. 315: 264–274.

    Article  PubMed  CAS  Google Scholar 

  • Hidaka, S., Maehara, M., Umino, O., Lu, Y. and Hashimoto, Y., 1993, Lateral gap junction connections between retinal amacrine cells summating sustained responses. NeuroReport 5: 29–32.

    Article  PubMed  CAS  Google Scholar 

  • Hitchcock, P.F., 1989, Exclusionary dendritic interactions in the retina of the goldfish. Development 106: 589–598.

    PubMed  CAS  Google Scholar 

  • Hitchcock, P.F., 1993, Neurobiotin coupling between developing ganglion cells in the retina of the goldfish. Invest. Ophthalmol. Visual Sci. 34: 878.

    Google Scholar 

  • Hitchcock, P.F., 1997, Tracer coupling among regenerated amacrine cells in the retina of the goldfish. Visual Neurosci. 14:463–472.

    Article  CAS  Google Scholar 

  • Hutsler, J.J. and Chalupa, L.M., 1995, Development of neuropeptide Y immunoreactive amacrine and ganglion cells in the pre-and postnatal cat retina. J. Comp. Neurol. 361: 152–164.

    Article  PubMed  CAS  Google Scholar 

  • Jacob, F., 1977, Evolution and tinkering. Science 196: 1161–1166.

    Article  PubMed  CAS  Google Scholar 

  • Johns, P.R., 1977, Growth of the adult goldfish eye. III. Source of the new retinal cells. J. Comp. Neurol. 176: 343–358.

    Article  PubMed  CAS  Google Scholar 

  • Kier, C.K., Buchsbaum, G. and Sterling, P., 1995, How retinal microcircuits scale for ganglion cells of different size. J. Neurosci. 15: 7673–7683.

    PubMed  CAS  Google Scholar 

  • Kock, J., Mecke, E., Orlov, O.Y., Reuter, T., Väisänen, R.A. and Wallgren, J.E., 1989, Ganglion cells in the frog retina: discriminant analysis of histological classes. Vision Res. 29: 1–18.

    Article  PubMed  CAS  Google Scholar 

  • Kolb, H., Nelson, R. and Mariani, A., 1981, Amacrine cells, bipolar cells and ganglion cells of the cat retina: a Golgi study. Vision Res. 21: 1081–1114.

    Article  PubMed  CAS  Google Scholar 

  • Liebman, P.A. and Enfine, G., 1968, Visual pigments of frog and tadpole (Rana pipiens). Vision Res. 8: 761–775.

    Article  PubMed  CAS  Google Scholar 

  • Marc, R.E., 1982, Spatial organization of neurochemically classified interneurons of the goldfish retina. I. Local patterns. Vision Res. 22: 589–608.

    CAS  Google Scholar 

  • Mastronarde, D.N., 1983, Interactions between ganglion cells in the cat retina. J. Neurophysiol. 49: 350–365.

    PubMed  CAS  Google Scholar 

  • Northcutt, R.G., 1984, Evolution of the vertebrate central nervous system: Patterns and Processes. Amer. Zool. 24: 701–716.

    Google Scholar 

  • Peichl, L., 1991, Alpha ganglion cells in mammalian retinae: common properties, species differences, and some comments on other ganglion cells. Visual Neurosci. 7: 155–169.

    Article  CAS  Google Scholar 

  • Peichl, L., Ott, H. and Boycott, B.B., 1987, Alpha ganglion cells in mammalian retinae. Proc. Roy. Soc. (Lond.) B 231: 169–197.

    Article  CAS  Google Scholar 

  • Perry, V.H., 1989, Dendritic interactions between cell populations in the developing retina. In ‘Development of the Vertebrate Retina’ Eds. B.L. Finlay and D.R. Sengelaub, Plenum Press, New York, pp. 149–172.

    Chapter  Google Scholar 

  • Podugolnikova, T.A., 1985, Morphology of bipolar cells and their participation in spatial organization of the inner plexiform layer of jack mackerel retina. Vision Res. 25: 1843–1851.

    Article  PubMed  CAS  Google Scholar 

  • Ramirez, V. and Ulfhake, B., 1991, Postnatal development of cat hind limb motoneurons supplying the intrinsic muscles of the foot sole. Dev. Brain Res. 62: 189–202.

    Article  CAS  Google Scholar 

  • Raymond, RA., Barthel, L.K., Rounsifer, M.E., Sullivan, S.A. and Knight, J.K., 1993, Expression of rod and cone visual pigments in goldfish and zebrafish: A rhodopsin-like gene is expressed in cones. Neuron 10: 1161–1174.

    Article  PubMed  CAS  Google Scholar 

  • Reh, T.A., 1989, The regulation of neuronal production during retinal neurogenesis. In ‘Development of the Vertebrate Retina’ Eds. B.L. Finlay and D.R. Sengelaub, Plenum Press, New York, pp. 43–67.

    Chapter  Google Scholar 

  • Rodieck, R.W., 1991, The density recovery profile: A method for the analysis of points in the plane applicable to retinal studies. Visual Neurosci. 6: 95–111.

    Article  CAS  Google Scholar 

  • Rodieck, R.W. and Brening, R.K., 1983, Retinal ganglion cells: Properties, types, genera, pathways and trans-species comparisons. Brain Behav. Evol. 23: 121–164.

    Article  PubMed  CAS  Google Scholar 

  • Rodieck, R.W. and Marshak, D.W., 1992, Spatial density and distribution of choline acetyltransferase immunore-active cells in human, macaque, and baboon retinas. J. Comp. Neurol. 321: 46–64.

    Article  PubMed  CAS  Google Scholar 

  • Rowe, M.H. and Stone, J., 1977, Naming of neurons: Classification and naming of cat retinal ganglion cells. Brain Behav. Evol. 14: 185–216.

    Article  PubMed  CAS  Google Scholar 

  • Rowe, M.H. and Stone, J., 1980, The interpretation of variation in the classification of nerve cells. Brain, Behav. Evol. 17: 123–151.

    Article  CAS  Google Scholar 

  • Shamim, K.M., Tóth, P. and Cook, J.E., 1997a, Large retinal ganglion cells in the pipid frog Xenopus laevis form independent, regular mosaics resembling those of teleost fish. Visual Neurosci., in press.

    Google Scholar 

  • Shamim, K.M., Scalia, F., Tóth, P. and Cook, J.E., 1997b, Large retinal ganglion cells that form independent, regular mosaics in the ranid frogs Rana esculenta and Rana pipiens. Visual Neurosci., in press.

    Google Scholar 

  • Smith, R.G. and Vardi, N., 1995, Simulation of the AII amacrine cell of mammalian retina: functional consequences of electrical coupling and regenerative membrane properties. Visual Neurosci. 12: 851–860.

    Article  CAS  Google Scholar 

  • Snyder, A.W., Bossomaier, T.J. and Hughes, A.A., 1990, The theory of comparative eye design. In ‘Vision: Coding and Efficiency’, Ed. C. Blakemore, Cambridge University Press, Cambridge, pp. 45–52.

    Google Scholar 

  • Stone, J., 1988, The origins of the cells of vertebrate retina. Prog. Ret. Res. 7: 1–19.

    Article  Google Scholar 

  • Straznicky, K. and Gaze, R.M., 1971, The growth of the retina in Xenopus laevis: an autoradiographic study. J. Embryol. Exp. Morphol. 26: 67–79.

    PubMed  CAS  Google Scholar 

  • Van Haesendonck, E. and Missotten, L., 1979, Synaptic contacts of the horizontal cells in the retina of the marine teleost, Callionymus lyra L. J. Comp. Neurol. 184: 167–192.

    Article  PubMed  Google Scholar 

  • Vaney, D.I., 1991, Many diverse types of retinal neurons show tracer coupling when injected with biocytin or Neurobiotin. Neurosci. Lett. 125: 187–190.

    Article  PubMed  CAS  Google Scholar 

  • Vaney, D.I., 1994a, Patterns of neuronal coupling in the retina. Prog. Ret. Eye Res. 13: 301–355.

    Article  Google Scholar 

  • Vaney, D.I., 1994b, Territorial organization of direction-selective ganglion cells in rabbit retina. J. Neurosci. 14: 6301–6316.

    PubMed  CAS  Google Scholar 

  • Vaney, D.I. and Hughes, A.A., 1990, Is there more than meets the eye? In ‘Vision: Coding and Efficiency’, Ed. C. Blakemore, Cambridge University Press, Cambridge, pp. 74–83.

    Google Scholar 

  • Wässle, H. and Riemann, H.J., 1978, The mosaic of nerve cells in the mammalian retina. Proc. Roy. Soc. (Lond.) B 200: 441–461.

    Article  Google Scholar 

  • Wässle, H., Boycott, B.B. and Röhrenbeck, J., 1989, Horizontal cells in the monkey retina: cone connections and dendritic network. Eur. J. Neurosci. 1: 421–435.

    Article  PubMed  Google Scholar 

  • Wässle, H., Chun, M.H. and Müller, F., 1987, Amacrine cells in the ganglion cell layer of the cat retina. J. Comp. Neurol. 265:391–408.

    Article  PubMed  Google Scholar 

  • Wässle, H., Peichl, L. and Boycott, B.B., 1981, Morphology and topography of on-and off-alpha cells in the cat retina. Proc. Roy. Soc. (Lond.) B 212: 157–175.

    Article  Google Scholar 

  • White, C.A., Chalupa, L.M., Johnson, D. and Brecha, N.C., 1990, Somatostatin-immunoreactive cells in the adult cat retina. J. Comp. Neurol. 293: 134–150.

    Article  PubMed  CAS  Google Scholar 

  • White, C.A. and Chalupa, L.M., 1991, Subgroup of alpha ganglion cells in the adult cat retina is immunoreactive for somatostatin. J. Comp. Neurol. 304: 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Williams, R.W., Bastiani, M.J., Lia, B. and Chalupa, L.M., 1986, Growth cones, dying axons, and developmental fluctuations in the fiber population of the cat’s optic nerve. J. Comp. Neurol. 246: 32–69.

    Article  PubMed  CAS  Google Scholar 

  • Williams, R.W. and Herrup, K., 1988, The control of neuron number. Ann. Rev. Neurosci. 11: 423–453.

    Article  PubMed  CAS  Google Scholar 

  • Williams, R.W., Cavada, C. and Reinoso-Suárez, F., 1993, Rapid evolution of the visual system: A cellular assay of the retina and dorsal lateral geniculate nucleus of the Spanish wildcat and the domestic cat. J. Neurosci. 13:208–228.

    PubMed  CAS  Google Scholar 

  • Witkovsky, P. and Dearry, A., 1991, Functional roles of dopamine in the vertebrate retina. Prog. Ret. Res. 11: 247–292.

    Article  CAS  Google Scholar 

  • Xiang, M., Zhou, H. and Nathans, J., 1996, Molecular biology of retinal ganglion cells. Proc. Natl. Acad. Sci. USA 93: 596–601.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cook, J.E. (1998). Getting to Grips with Neuronal Diversity. In: Chalupa, L.M., Finlay, B.L. (eds) Development and Organization of the Retina. NATO ASI Series, vol 299. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5333-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5333-5_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7433-6

  • Online ISBN: 978-1-4615-5333-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics