Skip to main content

Development of ON and OFF Retinal Ganglion Cell Mosaics

  • Chapter

Part of the book series: NATO ASI Series ((NSSA,volume 299))

Abstract

The regularity of cells in the vertebrate retina was first recognized in the mid-nineteenth century by Hannover (1843) who noted that “in many animals, double and single cones of the retina form a definite pattern.” Numerous investigators have since described the mosaics formed by cell populations in all three retinal nuclear layers (e.g., Wässle and Riemann, 1978; Young and Vaney, 1991; Cook and Becker, 1991; Hutsler and Chalupa, 1994). Such regular retinal arrays are thought to be necessary for the efficient functioning of the visual system. In particular, computer simulations and mathematical modeling have shown that the orderly distribution of photoreceptors is necessary for the adequate detection of spatial information (French et al., 1977). To preserve the integrity of such information, one would also expect complementary distributions in other retinal layers. Furthermore, as all visual information received by photoreceptors is conveyed to the brain via retinal ganglion cells (RGCs), these cells would be expected to possess a highly organized distribution pattern to ensure topographic input to visual target regions (Wässle and Riemann, 1978; Hirsch and Hylton, 1984). Moreover, as discussed by Jeremy Cook in this volume, it has een suggested that the presence of a regular distribution of cells is a determining factor for neuronal classification in the retina (Peichl, 1991; Wässle and Boycott, 1991).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bodnarenko SR, Jeyarasasingam G, Chalupa LM (1995) Development and regulation of dendritic stratification in retinal ganglion cells by glutamate-mediated afferent activity. Journal of Neuroscience 15(11): 7037–7045.

    PubMed  CAS  Google Scholar 

  • Chalupa, L.M. Factors underlying the loss of retinal ganglion cells. In: Cell Interactions in Visual Development. Eds. S.R. Hilfer and J.B. Sheffield, Springer Verlag, 1988, 69–86.

    Google Scholar 

  • Chalupa, L.M. The nature/nuture of retinal ganglion cell development. In: The Cognitive Neurosciences, a Handbook for the Field. Ed. M.S. Gazzaniga, MIT Press, 1995, 37–50.

    Google Scholar 

  • Chalupa LM, Snider CJ (1998) Topographic specificity in the retinocollicular projection of the developing ferret: An anterograde tracing study. Journal of Comparative Neurology (in press).

    Google Scholar 

  • Chalupa LM, Snider CJ, Kirby MA (1996) Topographic organization in the retinocollicular pathway of the fetal cat demonstrated by retrograde labeling of ganglion cells. Journal of Comparative Neurology 368: 295–303.

    Article  PubMed  CAS  Google Scholar 

  • Cook JE, Becker DL (1991) Regular mosaics of large displaced and non-displaced ganglion cells in the retina of the cichlid fish. Journal of Comparative Neurology 306(4): 668–684.

    Article  PubMed  CAS  Google Scholar 

  • Dubin M, Stark L, Archer S (1986) A role for action potential activity in the development of neuronal connections in the kitten retinogeniculate pathway. Journal of Neuroscience 6: 1021–1036.

    PubMed  CAS  Google Scholar 

  • French AS, Snyder AW, Stavenga DG (1977) Image degradation by an irregular retinal mosaic. Biological Cybernetics 27:229–233.

    Article  PubMed  CAS  Google Scholar 

  • Gargini C, Chalupa LM, and Bisti S (1996) Reorganization of receptive field properties after treatment of the developing retina with APB. Soc. Neuroscience. 22: 1725.

    Google Scholar 

  • Hannover A (1843) Mikroskopiske undersogelser af nervesystemet. Vid. Sel. Naturvid. Og Mathem. Afh. 10: 9–112.

    Google Scholar 

  • Hirsch J, Hylton R (1984) Quality of the primate photoreceptor lattice and limits of spatial vision. Vision Research 24: 347–355.

    Article  PubMed  CAS  Google Scholar 

  • Hutsler JJ, Chalupa LM (1994) Neuropeptide Y immunoreactivity identifies a regularly arrayed group of amacrine cells within the cat retina. Journal of Comparative Neurology 346: 481–489.

    Article  PubMed  CAS  Google Scholar 

  • Hutsler JJ, Chalupa LM (1995) Development of neuropeptide Y immunoreactive amacrine and ganglion cells in the pre-and postnatal cat retina. Journal of Comparative Neurology 361: 152–164.

    Article  PubMed  CAS  Google Scholar 

  • Jeyarasasingam G, Snider CJ, Ratto G, Chalupa LM (1998) Activity-regulated cell death contributes to the formation of ON and OFF alpha ganglion cell mosaics. Journal of Comparative Neurology (in press).

    Google Scholar 

  • Kirby MA, Chalupa LM (1986) Retinal crowding alters the morphology of alpha ganglion cells. Journal of Comparative Neurology 251: 532–541.

    Article  PubMed  CAS  Google Scholar 

  • Kuffler SW (1953) Discharge patterns and functional organization of mammalian retina. Journal of Neurophysiology 16: 37–68.

    PubMed  CAS  Google Scholar 

  • Lau K, So K, Tay D (1990) Effects of visual or light deprivation on the morphology and the elimination of the transient features during development of type I retinal ganglion cells in hamsters. Journal of Comparative Neurology 300: 583–592.

    Article  PubMed  CAS  Google Scholar 

  • Leventhal A, Hirsch H (1983) Effects of visual deprivation upon the morphology of retinal ganglion cells projecting to the dorsal lateral geniculate nucleus of the cat. Journal of Neuroscience 3: 332–344.

    PubMed  CAS  Google Scholar 

  • Maslim J, Stone J (1986) Synaptogenesis in the retina of the cat. Brain Research 373: 35–48.

    Article  PubMed  CAS  Google Scholar 

  • Maslim J, Stone J (1988) Time course of stratification of the dendritic fields of ganglion cells in the retina of the cat. Developmental Brain Research 44: 87–93.

    Article  PubMed  CAS  Google Scholar 

  • Mastronarde DN, Thiebeault MA, Dubin MW (1984) Non-uniform postnatal growth of the cat retina. Journal of Comparative Neurology 228:598–608.

    Article  PubMed  CAS  Google Scholar 

  • Nelson R, Famiglietti EV, Kolb H (1978) Intracellular staining reveals different levels of stratification for on-and off-center ganglion cells in cat retina. Journal of Neurophysiology 41: 472–483.

    PubMed  CAS  Google Scholar 

  • O’Leary DDM, Crespo D, Fawcett JW, Cowan WM (1986a) The effect of intraocular tetrodotoxin on the postnatal reduction in the numbers of optic nerve axons in the rat. Developmental Brain Research 30: 96–103.

    Article  Google Scholar 

  • O’Leary DDM, Fawcett JW, Cowan WM (1986b) Topographic targeting errors in the retinocollicular projection and their elimination by selective ganglion cell death. Journal of Neuroscience 6: 3692–3705.

    PubMed  Google Scholar 

  • Pearson HE, Payne BR, Cunningham TJ (1993) Microglial invasion and activation in response to naturally occurring neuronal degeneration in the ganglion cell layer of the postnatal cat retina. Developmental Brain Research 76: 249–255.

    Article  PubMed  CAS  Google Scholar 

  • Peichl L (1991) Alpha ganglion cells in mammalian retinae: common properties, species differences, and some comments on other ganglion cells. Visual Neuroscience 7: 55–169.

    Google Scholar 

  • Penn AA, Wong ROL, Shatz CJ (1994) Neuronal coupling in the developing mammalian retina. Journal of Neuroscience 14(6): 3605–3615

    Google Scholar 

  • Ramoa AS, Campbell G, Shatz CJ (1988) Dendritic growth and remodeling of cat retinal ganglion cells during fetal and postnatal development/Journal of Neuroscience 8: 4239–4261.

    PubMed  CAS  Google Scholar 

  • Slaughter MM, Miller RF (1981) 2-amino-4-phosphonobutyric acid: A new pharmacological tool for retina research. Science 211:182–184.

    Article  PubMed  CAS  Google Scholar 

  • Thompson I, Holt C (1989) Effects of intraocular tetrodotoxin on the development of the retinocollicular pathway in the syrian hamster. Journal of Comparative Neurology 282: 371–388.

    Article  PubMed  CAS  Google Scholar 

  • Wässle H, Boycott BB (1991) Functional architecture of the mammalian retina. Physiological Reviews 71(2): 447–480.

    PubMed  Google Scholar 

  • Wässle H, Boycott BB, Illing R-B (1981a) Morphology and mosaic of on-and off-beta cells in the cat retina and some functional considerations. Proceedings of the Royal Society of London B 212: 177–195.

    Article  Google Scholar 

  • Wässle H, Peichl L, Boycott BB (1981b) Morphology and topography of on-and off-alpha cells in the cat retina. Proceedings of the Royal Society of London B 212: 157–175.

    Article  Google Scholar 

  • Wässle H, Riemann HJ (1978) The mosaic of nerve cells in the mammalian retina. Proceedings of the Royal Society of London B 200: 441–461.

    Article  Google Scholar 

  • Wässle H, Yamashita M, Greferath U, Grünert U, Müller F (1991) The rod bipolar cell of the mammalian retina. Visual Neuroscience 7: 99–112.

    Article  PubMed  Google Scholar 

  • Williams RW, Chalupa LM (1982) Prenatal development of retinocollicular projections in the cat: an anterograde tracer transport study. Journal of Neuroscience 2: 604–622.

    PubMed  CAS  Google Scholar 

  • Wong ROL, Herrmann K, Shatz C J (1991) Remodeling of retinal ganglion cell dendrites in the absence of action potential activity. Journal of Neurobiology 22: 685–697.

    Article  PubMed  CAS  Google Scholar 

  • Wong ROL, Hughes A (1987) Role of cell death in the topogenesis of neuronal distributions in the developing cat retinal ganglion cell layer. Journal of Comparative Neurology 262: 496–511.

    Article  PubMed  CAS  Google Scholar 

  • Young HM, Vaney DI (1991) Rod-signal interneurons in the rabbit retina: I. Rod bipolar cells. Journal of Comparative Neurology 310: 139–153.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chalupa, L.M., Jeyarasasingam, G., Snider, C.J., Bodnarenko, S.R. (1998). Development of ON and OFF Retinal Ganglion Cell Mosaics. In: Chalupa, L.M., Finlay, B.L. (eds) Development and Organization of the Retina. NATO ASI Series, vol 299. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5333-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5333-5_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7433-6

  • Online ISBN: 978-1-4615-5333-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics