Skip to main content

Embryonic Patterning of Cone Subtypes in the Mammalian Retina

  • Chapter
Development and Organization of the Retina

Part of the book series: NATO ASI Series ((NSSA,volume 299))

Abstract

Vertebrate color vision is mediated by different subtypes of cones whose visual pigments or opsins are maximally sensitive to long (LWS cones), middle (MWS cones), or short (SWS cones) wavelengths of light (Dartnall et al., 1983). Quantitative assessment of the distribution of these wavelength-sensitive cones in several mammalian species has revealed dramatically different arrangements and combinations of cone subtypes across the retinal sheet that coincide with differences in color vision and photopic acuity. For example, in the retina of both rhesus monkey and man, opsin-specific cone subtypes are arranged into reiterative patterns, in which each SWS cone is surrounded by approximately ten L/MWScones (Szel et al., 1988; Curcio et al, 1991; Wikler and Rakic, 1990). In contrast, in the mouse cone subtypes are topographically segregated with ventral retina occupied exclusively by SWS cones and dorsal retina dominated by MWS cones (Szel et al., 1992; Rohlich et al., 1994; Calderone and Jacobs, 1995). Thus, the different adult cone arrangements in murine and primate retina suggest that color vision may be tightly linked to the specification of both the position and the relative ratios of wavelength-sensitive cone subtypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allenby, G., Bocquel, M.T., Saunders, M., Kazmer, S., Speck, J., Rosenberger, M., Lovey, A., Kastner, P., Grippo, J.F., Chambon, P., and Levin, A.A. (1993). Retinoic acid receptors and retinoid X receptors: interactions with endogenous retinoic acids. Proc. Natl. Acad. Sci. USA 90, 30–34.

    Article  PubMed  CAS  Google Scholar 

  • Anchan, R.M., Drake, D.P., Haines, C.F., Gerwe, E.A., and LaMantia, A.-S. (1997). Disruption of local retinoid-mediated gene expression accompanies abnormal development in the mammalian olfactory pathway. J. Comp. Neurol. 379, 171–184.

    Article  PubMed  CAS  Google Scholar 

  • Balkan, W., Colbert, M., Bock, C., and Linney, E. (1992). Transgenic indicator mice for studying activated retinoic acid receptors during development. Proc. Natl. Acad. Sci. USA 89, 3347–3351.

    Article  PubMed  CAS  Google Scholar 

  • Berrodin, T.J., Mark, M.S., Ozato, K., Linney, E., and Lazar, M.A. (1992). Heterodimerization among thyroid hormone receptor, retinoic acid receptor, retinoid X receptor, chicken ovalbumin upstream promoter transcription factor, and an endogenous liver protein. Mol. Endo. 6, 1468–1478.

    Article  CAS  Google Scholar 

  • Boylan, J.F., and Gudas, L.J. (1991). Overexpression of the cellular retinoic binding protein-I (CRABP-I) results in a reduction in differentiation-specific gene expression in F9 teratocarcinoma cells. J. Cell Bio. 122, 965–979.

    Article  Google Scholar 

  • Boylan, J.F. and Gudas, L.J. (1992). The level of CRABP-I expression influences the amounts and types of all-trans retinoic acid metabolism in F9 teratocarcinoma stem cells. J. Biol. Chem. 267, 21486–21491.

    PubMed  CAS  Google Scholar 

  • Bresnick, G.H., V.C. Smith, and J. Pokorny (1989). Autosomal dominantly inherited macular dystrophy with preferential short-wavelength sensitive cone involvement. Am. J. Ophthalmol. 108:265–216.

    PubMed  CAS  Google Scholar 

  • Calderone, J.B. and G.H. Jacobs (1995). Regional variations in the relative sensitivity to UV light in the mouse retina. Visual Neurosci. 12:463–468.

    Article  CAS  Google Scholar 

  • Capecchi, M.R. (1994). Targeted gene replacement. Sci.Amer. 270, 52–59.

    Article  PubMed  CAS  Google Scholar 

  • Clagett-Dame, M., Verhalen, T. J., Biedler, J. L., and Repa, J. J. (1993). Identification and characterization of all-trans retinoic acid receptor transcripts and receptor protein in human neuroblastoma cells. Arch. Biochem. Biophys. 300, 684–693.

    Article  PubMed  CAS  Google Scholar 

  • Colbert, M.C., Rubin, W.W., Linney, E., and LaMantia, A.-S. (1995). Retinoid signaling and the generation of regional and cellular diversity in the embryonic mouse spinal cord. Dev. Dyn. 204, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Colbert, M.C., Linney, E., and LaMantia, A.-S. (1993). Local sources of retinoic acid coincide with retinoid-medi-ated transgene activity during embryonic development. Proc. Natl. Acad. Sci. USA 90, 6572–6576.

    Article  PubMed  CAS  Google Scholar 

  • Crowe, D. L., Hu, L., Gudas, L. J., and Rheinwald, J. G. (1991). Variable expression of retinoic acid receptor beta (RARß) mRNA in human oral and epidermal keratinocytes; relation to keratin 19 expression and keratini-zation potential. Differentiation 48, 199–203.

    Article  PubMed  CAS  Google Scholar 

  • Curcio, C.A., Allen, K.A., Sloan, K.R., Lerea, C.L., Hurley, J.B., Klock, I.B., and Milam, A.H. (1991) Distribution and morphology of human cone photoreceptors stained with anti-blue opsin. J. Comp. Neurol. 312:610–624.

    Article  PubMed  CAS  Google Scholar 

  • Dartnall, H.J.A., Bowmaker, J.K., and Mollon, J.D. (1983). Human visual pigments: microspectrophotometric results from the eyes of seven persons. Proc. R. Soc. Lond. B. 220:115–130.

    Article  PubMed  CAS  Google Scholar 

  • Dekker, E.-J., Vaessen, M.-J., van den Berg, C., Timmermans, A., Godsave, S., Holling, T., Nieukwoop, P., Kessel, A. G., and Durston, A. (1994). Overexpression of a cellular retinoic acid binding protein (xCRABP) causes anteroposterior defects in developing Xenopus embryos. Development 120, 973–985.

    PubMed  CAS  Google Scholar 

  • de The, H., Marchio, A., Tiollais, A., and Dejean, A. (1989). Differential expression and ligand regulation of the retinoic acid receptor alpha and beta genes. EMBO J. 8, 429–433.

    PubMed  Google Scholar 

  • Dolle, P., Ruberte, E., Kastner, P., Petkovich, M., Stoner, C. M., Gudas, L. J., and Chambon, P. (1989). Differential expression of genes encoding alpha, beta, and gamma retinoic acid receptors and CRABP in the developing limbs of the mouse. Nature 342, 702–705.

    Article  PubMed  CAS  Google Scholar 

  • Dolle, P., Ruberte, E., Leroy, P., Morriss-Kay, G., and Chambon, P. (1990). Retinoic acid receptors and cellular retinoid binding proteins. I. A systemic study of their differential pattern of transcription during mouse organogenesis. Development 110, 1133–1151.

    PubMed  CAS  Google Scholar 

  • Dolle, P., Fraulob, V., Kastner, P., and Chambon, P. (1994). Developmental expression of murine retinoid X receptor (RXR) genes. Mech. Dev. 51, 91–104.

    Article  Google Scholar 

  • Durand, B., Saunders, M., Leroy, P., Leid, M., and Chambon, P. (1992). All-trans and 9-cis retinoic acid induction of CRABP II transcription is mediated by RAR-RXR heterodimers bound to DR1 and DR2 repeated motifs. Cell 71, 73–85.

    Article  PubMed  CAS  Google Scholar 

  • Falls, H.F., Wolter, J.R., and Alpern, M. (1965) Typical total monochromacy—a histological and psychophysical study. Arch.Ophthal. 74:610–616.

    Article  PubMed  CAS  Google Scholar 

  • Fiorella, P.D., and Napoli, J.L. (1991). Expression of cellular retinoic acid binding protein (CRABP) in Escherichia coli. Characterization and evidence that holo-CRABP is a substrate in retinoic acid metabolism. J. Biol. Chem. 266, 16572–16759.

    PubMed  CAS  Google Scholar 

  • Giguere, V. (1994). Retinoic acid receptors and cellular retinoid binding proteins: complex interplay in retinoid signaling. Endo. Rev. 15, 61–79.

    CAS  Google Scholar 

  • Glickstein, M., and Heath, R. (1975). Receptors in the monochromat eye. Vis.Res. 15:633–636.

    Article  PubMed  CAS  Google Scholar 

  • Grondona, J.M., Kastner, P., Gansmuller, A., Decimo, D., Chambon, P., and Mark, M. (1996). Retinal dysplasia and degeneration in RARβ2/RARγ2 compound mutant mice. Development 122, 2173–2188.

    PubMed  CAS  Google Scholar 

  • Hamada, K., Gleason, S.L., Levi, B.Z., Hirschfield, S., Appella, E., and Ozato, K. (1989). H-2RIIBP, a member of the nuclear receptor superfamily that binds to both the regulatory element of major histocompatibility class I genes and the estrogen response elements. Proc. Natl. Acad. Sci. USA 86, 8289–8293.

    Article  PubMed  CAS  Google Scholar 

  • Heery, D.M., Zacarewski, T. Pierrat, B., Gronemeyer, H., Chambon, P., and Losson, R. (1993). Efficient transacti-vation by retinoic acid receptors in yeast requires retinoid X receptors. Proc. Natl. Acad. Sci. USA 90, 4281–4285.

    Article  PubMed  CAS  Google Scholar 

  • Heyman, R.A., Mangelsdorf, D.J., Dyck, J.A., Stein, R.B., Eichele, G., Evans, R.M., and Thaller, C. (1992). 9-cis retinoic acid is a high affinity ligand for retinoid X receptor. Cell 66, 397–406.

    Article  Google Scholar 

  • Hood, D.C., Cideciyan, A.V., Roman, A.J., and Jacobson, S.G. (1995). Enhanced S cone syndrome: evidence for an abnormally large number of S cones. Vision Res. 35:1473–1481.

    Article  PubMed  CAS  Google Scholar 

  • Hyatt, G.A., Schmitt, E.A., Marsh-Armstrong, N.R., and Dowling, J.E. (1992). Retinoic acid induced duplication of the zebrafish retina. Proc. Natl. Acad. Sci. USA 89, 8293–8297.

    Article  PubMed  CAS  Google Scholar 

  • Hyatt, G.A., Schmitt, E.A., Marsh-Armstrong, N., McCaffery P., Drager, U.C., and Dowling, J.E. (1996). Retinoic acid establishes ventral characteristics. Development 122, 195–204.

    PubMed  CAS  Google Scholar 

  • Hyatt G. A. and Dowling, J. E. (1997). Retinoic acid: A key molecule for eye and photoreceptor development. Invest. Ophth. Vis. Sci. 38, 1471–1475.

    CAS  Google Scholar 

  • Kastner, P., Grondona, J.M., Mark, M., Gansmuller, A., LeMeur M., Decimo, D., Vonesch, J.-L., Dolle, P., and Chambon, P. (1994). Genetic analysis of RXRα developmental function: Convergence of RXR and RAR signaling pathways in heart and eye morphogenesis. Cell 78, 987–1003.

    Article  PubMed  CAS  Google Scholar 

  • Kastner, P., Mark, M., Ghyselinch, N., Krezel, W., Dupe, V., Grondona, J.M., and Chambon, P. (1997). Genetic evidence that the retinoid signal is transduced by heterodimeric RXR/RAR functional units during mouse development. Development 124, 313–326.

    PubMed  CAS  Google Scholar 

  • Kato, S., Mano, H., Kumazawa, T., Yoshizawa, Y., Kojima, R., and Masushige, S. (1992). Effect of retinoid status on alpha, beta, and gamma retinoic acid mRNA levels in various rat tissues. Biochem. J. 286, 755–60.

    PubMed  CAS  Google Scholar 

  • Kelley, M.W., Xu, R.A., Wagner, M.A., Warchol, M.E., and Corwin, J.T. (1993). The developing organ of Corti contains retinoic acid and forms supernumerary hair cells in response to exogenous retinoic acid in culture. Development 119, 1041–1053.

    PubMed  CAS  Google Scholar 

  • Kelley, M.W., Turner, J.K., and Reh, T.A. (1994). Retinoic acid promotes differentiation of photoreceptors in vivo. Development 120, 2091–2102.

    PubMed  CAS  Google Scholar 

  • Leid, M., Kastner, P., and Chambon, P. (1992a). Multiplicity generates diversity in the retinoic acid signaling pathways. Trends Biochem. Sci. 17, 427–433.

    Article  PubMed  CAS  Google Scholar 

  • Leid, M., Kastner, P., Lyons, R., Nakshatri, H., Saunders, M., Zacharewski, T. Chen, J.-Y., Staub, A., Garnier, J.-M., Mader, S., and Chambon, P. (1992b). Purification, cloning, and RXR identity of the HeLa cell factor with which RAR or TR heterodimerizes to bind target sequences efficiently. Cell 68, 377–395.

    Article  PubMed  CAS  Google Scholar 

  • Levin, A.A., Sturzenbecker, L.J., Kazmer, S., Bosakowski, T., Huselton, C., Allenby, G., Speck, J., Kratzeisen, C., Rosenberger, M., Lovay, A. (1992). 9-cis retinoic acid stereoisomer binds and activates the nuclear receptor RXR alpha. Nature 355, 359–361.

    Article  PubMed  CAS  Google Scholar 

  • Linney, E. (1992). Retinoic acids: transcription factors modulating gene regulation, development, and differentiation. Curr. Top. Dev. Bio. 27, 309–350.

    Article  CAS  Google Scholar 

  • Lohnes, D., Mark, K., Mendelsohn, C., Dolle, P., Dierich, A., Gorry, P., Gansmuller, A., and Chambon, P. (1994). Function of the retinoic acid receptors (RARs) during development. I. Craniofacial and skeletal abnormalities in RAR double mutants. Development 120, 2723–2748.

    PubMed  CAS  Google Scholar 

  • Lovat, P.E., Pearson, A.D., Malcolm, A., and Redfern, C.P. (1993). Retinoic acid receptor expression during the in vitro differentiation of human neuroblastomas. Neurosci. Letters 162, 109–13.

    Article  CAS  Google Scholar 

  • Mangelsdorf, D.J., Ong, E.S., Dyck, J.A., and Evans, R.M. (1990). Nuclear receptor that identifies a novel retinoic acid response pathway. Nature 345, 224–229.

    Article  PubMed  CAS  Google Scholar 

  • Mangelsdorf, D.S., Borgmeyer, U., Heyman, R.A., Zhou, J.Y., Ong, E.S., Oro, A.E., Kakizuka, A., and Evans, R.M. (1992). Characterization of 3 RXR genes that mediate the action of 9-cis retinoic acid. Genes Dev. 6, 329–344.

    Article  PubMed  CAS  Google Scholar 

  • Mangelsdorf, D.S., and Evans, R.M. (1995). The RXR heterodimers and orphan receptors. Cell 83, 841–850.

    Article  PubMed  CAS  Google Scholar 

  • Mark, M.S., Hallenbeck, P.L., Nagata, T., Segars, J. H., Appella, E., Nikodem U. M., and Ozato, K. (1992). H-2RIIBP (RXR β) Heterodimerization provides a mechanism for combinatorial diversity in the regulation of retinoic acid and thyroid hormone responsive genes. EMBO J. 11, 1419–35.

    Google Scholar 

  • Marsh-Armstrong, N., McCaffery, P., Gilbert, W., Dowling, J. E., and Drager, U. C. (1994). Retinoic acid is necessary for development of the ventral retina in zebrafish. Proc. Natl. Acad. Sci. USA 91, 7286–7290.

    Article  PubMed  CAS  Google Scholar 

  • McCaffery, P., Lee, M.-O., Wagner, M.A., Sladek, N.E., and Drager, U.C. (1992). Asymmetrical retinoic acid synthesis in the dorsoventral axis of the retina. Development 115, 371–382.

    PubMed  CAS  Google Scholar 

  • McCaffery, P., Posch, K.C., Napoli, J.L., Gudas, L., and Drager, U.C. (1993). Changing patterns of the retinoic acid system in the developing retina. Dev. Bio. 158, 390–399.

    Article  CAS  Google Scholar 

  • McMenamy K.R., and Zachman, R.D. (1993). Effect of gestational age and retinol (vitamin A) deficiency on fetal rat lung nuclear retinoic acid receptors. Pediatric Res. 33, 251–255.

    Article  CAS  Google Scholar 

  • Means A.L. and Gudas, L.J. (1994). The roles of retinoids in vertebrate development. Ann. Rev. Biochem. 64, 201–233.

    Article  Google Scholar 

  • Means, A.L., and Gudas, L.J. (1997). The CRABP I gene contains two separable, redundant regulatory regions active in neural tissues in transgenic mouse embryos. Dev. Dyn. 209, 59–69.

    Article  PubMed  CAS  Google Scholar 

  • Mendelsohn, C., Lohnes, D., Decimo, D., Lufkin, T., LeMeur, M., Chambon, P., and Mark, M. (1994). Function of the retinoic acid (RARs) during development. II. Multiple abnormalities at various stages of organogenesis in RAR double mutants. Development 120, 2749–2771.

    PubMed  CAS  Google Scholar 

  • Meyer, M., Sonntag-Buck, V., Keaveney, M., and Stunnenberg, H. G. (1996). Retinoid dependent transcription: the RAR/RXR-TBP-EIA/EIA-LA connection [review]. Biochem. 62, 97–109.

    CAS  Google Scholar 

  • Morriss-Kay, G. (1992). Retinoic acid receptors in normal growth and development [review]. Cancer Surveys 14, 181–193.

    PubMed  CAS  Google Scholar 

  • Nagpal, S., Friant, S., Nakshatri, H., and Chambon, P. (1993). RARs and RXRs: Evidence for two autonomous transactivation functions (AF-1 and AF-2) and heterodimerization in vivo. EMBO J. 12, 2349–2360.

    PubMed  CAS  Google Scholar 

  • Rohlich, P., Th. van Veen, and A. Szel (1994). Two different visual pigments in one retinal cone cell. Neuron 13:1159–1166.

    Article  PubMed  CAS  Google Scholar 

  • Ruberte, E., Dolle, P., Krust, A., Zelent, A., Morriss-Kay, G., and Chambon, P. (1990). Specific spatial and temporal distribution of retinoid acid receptor gamma transcripts during mouse embryogenesis. Development 108, 213–222.

    PubMed  CAS  Google Scholar 

  • Ong, D.E., Newcomer, M.E., and Chytil, F. (1994). Cellular retinoid binding proteins. in “The Retinoids: Biology, Chemistry, and Medicine,” 2nd ed., Sporn, M. B., Roberts, A. B., Goodman, D. S. (eds). New York: Raven Press, pp. 283–317.

    Google Scholar 

  • Ruberte, E., Dolle, P., Krust, A., Zelent, A., Morriss-Kay, G., and Chambon, P. (1990). Specific spatial and temporal distribution of retinoid acid receptor gamma transcripts during mouse embryogenesis. Development 108, 213–222.

    PubMed  CAS  Google Scholar 

  • Ruberte, E., Dolle, P., Chambon, P., and Morriss-Kay, G. (1991). Retinoic acid receptors and cellular binding proteins. II. Their differential pattern of transcription during early morphogenesis in mouse embryos. Development 111, 45–60.

    PubMed  CAS  Google Scholar 

  • Ruberte, E., Friederich, V., Chambon, P., and Morriss-Kay, G. (1993). Retinoic acid receptors and cellular retinoid binding proteins. III. Their differential transcript distribution during mouse nervous system development. Development 118, 267–282.

    PubMed  CAS  Google Scholar 

  • Stenkamp, D.L., Gregory, J.K., and Adler, R. (1993). Retinoid effects in purified cultures of chick embryo retina neurons and photoreceptors. Invest.Ophthal. Vis.Sci. 34, 2425–2436.

    PubMed  CAS  Google Scholar 

  • Stenkamp, D.L., and Adler, R. (1994). Cell-type and developmental-stage-specific metabolism and storage of retinoids by embryonic chick retinal cells in culture. Exp.Eye Res. 58, 675–687.

    Article  PubMed  CAS  Google Scholar 

  • Szel, A., Diamantstein, T., and Rohlich, P. (1988). Identification of the blue-sensitive cones in the mammalian retina by anti-visual pigment antibody. J. Comp. Neurol. 273:593–602.

    Article  PubMed  CAS  Google Scholar 

  • Szel, A., Rohlich, P., Caffe, A.R., Juliusson, B., Aguirre, G., and Van Veen, T. (1992). Unique topographic segregation of two spectral classes of cones in the mouse retina. J. Comp. Neurol. 325:327–342.

    Article  PubMed  CAS  Google Scholar 

  • Szel, A., Rohlich, P., Mieziewska, K., Aguirre, G., and Van Veen, T. (1993). Spatial and temporal differences between the expression of short-and middle-wave sensitive cone pigments in the mouse retina: a developmental study. J. Comp. Neurol. 331:564–577.

    Article  PubMed  CAS  Google Scholar 

  • Tabin, C.J. (1991). Retinoids, homeoboxes, and growth factors: Toward molecular models for limb development. Cell 36, 199–217.

    Article  Google Scholar 

  • Warkany, J. and Schraffenberger, S. (1946). Congenital malformations induce in rats by maternal vitamin A deficiency. I. Defects of the eye. Arch. Ophth. 35, 150–169.

    Article  PubMed  CAS  Google Scholar 

  • Wikler, K.C. and Rakic, P. (1991). Relation of an array of early-differentiating cones to the photoreceptor mosaic in the primate retina. Nature, 351, 397–400.

    Article  PubMed  CAS  Google Scholar 

  • Wikler, K.C. and Rakic, P. (1994). An array of early-differentiating cones in the fetal monkey retina precedes the emergence of the photoreceptor mosaic. Proc. Natl. Acad. Sci., 91, 6534–6538.

    Article  PubMed  CAS  Google Scholar 

  • Wikler, K.C. and Rakic, P. (1996a). Development of the primate photoreceptor mosaic. Perspectives on Developmental Neurobiology, 3, 161–175.

    PubMed  CAS  Google Scholar 

  • Wikler, K.C., Szel, A., and Jacobsen, A-L. (1996b). Evidence for prenatal determination of cone opsin phenotypes and position in the mouse retina. J. Comp. Neurol., 374, 96–107.

    Article  PubMed  CAS  Google Scholar 

  • Wikler, K.C., Rakic, P., Bhattacharyya, N., and MacLeish, P.R. (1997). Early emergence of photoreceptor mosaicism in the primate retina revealed by a novel cone-specific monoclonal antibody. J. Comp. Neurol., 377, 500–508.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, J. G., Roth, C. B., and Warkany, J. (1953). An analysis of the syndrome of malformations induced by maternal vitamin A deficiency: Effects of restoration of vitamin A at various times during gestation. Am. J. Anat. 92, 189–217.

    Google Scholar 

  • Wu, T.C., Wang, L., and Wan, Y.J. (1992). Retinoic acid regulates gene expression of retinoic acid receptors alpha, beta, and gamma in F9 mouse teratocarcinoma cells. Differentiation 51, 219–224.

    Google Scholar 

  • Yu, V.C., Delsert, C., Andersen, B., Holloway, J.M., Devary, O., Naar, A.M., Kim, S.Y., Boutin, J.M., (1991). Retinoic acid, thyroid hormone, and vitamin D receptors to their cognate response elements. Cell 67, 1251–1266.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, X.K., Hoffman, B., Tran, P.B., Graupner, G., and Pfahl, M. (1992). Retinoid X receptor is an auxiliary protein for thyroid hormone and retinoic acid receptors. Nature 355, 441–6.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, X.K. and Pfahl, M. (1993). Hetero-and homodimeric receptors in thyroid hormone and vitamin A action. Receptor 3, 183–191.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wilkler, K.C., Stull, D.L. (1998). Embryonic Patterning of Cone Subtypes in the Mammalian Retina. In: Chalupa, L.M., Finlay, B.L. (eds) Development and Organization of the Retina. NATO ASI Series, vol 299. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5333-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5333-5_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7433-6

  • Online ISBN: 978-1-4615-5333-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics