Skip to main content

Functional Consequences of Eliminating Prenatal Binocular Interactions

  • Chapter
  • 155 Accesses

Part of the book series: NATO ASI Series ((NSSA,volume 299))

Abstract

The pattern of neuronal connections in the visual system of mammals with highly developed binocular vision is a remarkable example of complexity and precision. Inputs from each retina are segregated in the geniculostriate system (Gerey et al., 1991), so that retinal ganglion cell axons terminate in separate, eye-specific layers within the dorsal lateral geniculate nucleus (dlgn). In turn, the axons of dlgn neurons project to the primary visual cortex in alternating clusters, providing the anatomical basis for ocular dominance columns (LeVay et al., 1975). However, during the early phases of development the projections from each eye are completely intermingled in the dlgn and the superior colliculus of fetal monkeys and cats. In these species, retinal axons segregate in the second half of gestation into the eye specific domains characteristic of the mature animal (Rakic, 1976 1977; Shatz, 1983; Williams and Chalupa, 1982; White and Chalupa, 1991).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bisti S. and Trimarchi C. (1993) Visual performance in behaving cats after prenatal unilateral enucleation. Proc. Natl. Acad. Sci. USA, 90, 11142–11146.

    Article  PubMed  CAS  Google Scholar 

  • Bisti S., Trimarchi C. and Turlejski K. (1995) Prenatal monocular enucleation induces a selective loss of low-spatial-frequency cortical responses to the remaining eye. Proc. Natl. Acad. Sci. USA, 92, 3908–3912.

    Article  PubMed  CAS  Google Scholar 

  • Chalupa L.M. and Williams R.W. (1984) Organization of the cat’s lateral geniculate nucleus following interruption of prenatal binocular competition. Hum. Neurobiol. 3, 103–107.

    PubMed  CAS  Google Scholar 

  • Chalupa L.M., Williams R.W. and Henderson Z. (1984) Binocular interaction in fetal catregulates the size of the ganglion cell population. Neuroscience, 12, 1139–1146.

    Article  Google Scholar 

  • Freeman R.D. and Bradley A. (1980) Monocular deprived humans: non deprived eye has supernormal vernier acuity. J. Neurophysiol. 43, 1645–1653.

    PubMed  CAS  Google Scholar 

  • Garey L.F., Dreher B. and Robinson S. (1991) The organization of the visual thalamus Vision and Visual Dysfunction, eds. Dreher B. & Robinson S.R. (Macmillan, London) Vol. 3, pp. 176–234.

    Google Scholar 

  • Garraghty P.E., Shatz C.J., Sretavan D.W. and Sur M. (1988) Axon arbors of X and Y retinal ganglion cells are differentially affected by prenatal disruption of binocular input. Proc. Natl. Acad. Sci. USA, 85, 7361–7365.

    Article  PubMed  CAS  Google Scholar 

  • Johnson C.A., Post R.B., Chalupa L.M. and Lee T.J. (1982) Monocular deprivation in humans: a study of identical twins. Invest. Ophthal. & Vis. Sci. 23, 135–138.

    CAS  Google Scholar 

  • Kirby M.A. and Chalupa L.M. (1986) Retinal crowding alters the morphology of alpha ganglion cells. J. Comp. Neurol. 251, 532–541.

    Article  PubMed  CAS  Google Scholar 

  • LeVay S., Hubel D.H. and Wiesel T.N. (1975) The pattern of ocular dominannce columns in macaque visual cortex revealed by a reduced silver stain. J. Comp. Neurol., 159, 559–575.

    Article  PubMed  CAS  Google Scholar 

  • MacAvoy M.G., Bruce C.J. and Rakic P.. (1987) Effect of prenatal monocular enucleation on vernier hyperacuity in rhesus monkeys. Soc. Neurosci. Abs., 13, 1244.

    Google Scholar 

  • Rakic P. (1976) Prenatal genesis of connections subserving ocular dominance in the rhesus monkey. Nature, 261, 467–471.

    Article  PubMed  CAS  Google Scholar 

  • Rakic P. (1977) development of the visual system in the rhesus monkey. Phil. Trans. Roy. Soc. Lond. B. 278, 245–260.

    Article  CAS  Google Scholar 

  • Rakic P. (1981) Development of visual centers in the primate brain depends on binocular competition before birth. Science, 214, 928–931.

    Article  PubMed  CAS  Google Scholar 

  • Rakic P. and Riley K.P. (1983) Regulation of axon number in the primate optic nerve by prenatal binocular competition. Nature, 305, 135–137.

    Article  PubMed  CAS  Google Scholar 

  • Reese B.E., Guillery R.W., Marzi C.A. and Tassinari G. (1991) J. Comp. Neurol., 306, 539–553.

    Article  PubMed  CAS  Google Scholar 

  • Shook B.L., Maffei L, and Chalupa L.M. (1985) Functional organization of the cat’s visual cortex after prenatal interruption of binocular interactions. Proc. Natl. Acad. Sci. USA, 82, 3901–3905.

    Article  PubMed  CAS  Google Scholar 

  • Shatz C.H. (1983) The prenatal development of the cat’s retino geniculate pathways. J. Neurosci. 3, 482–499.

    PubMed  CAS  Google Scholar 

  • Sur M. (1988) Development and plasicity of retinal X and Y axon terminations in the cat’s lateral geniculate nucleus. Braib Behav. Evol., 31, 243–251.

    Article  CAS  Google Scholar 

  • White C.A., Chalupa L.M., Maffei L., Kirby M.A. and Lia B. (1989) Response properties in the dorsal lateral geniculate nucleus of the adult cat after interruption of prenatal binocular interactions. J. Neurophysiol. 62, 1039–1051.

    PubMed  CAS  Google Scholar 

  • White C.A. and Chalupa L.M. (1991) Development of the mammalian retinofugal pathways in Vision and Visual Dysfunction, eds. Dreher B. & Robinson S.R. (Macmillan, London) Vol. 3, pp. 129–143.

    Google Scholar 

  • Wiesel T.N. and Hubel D.H. (1963) Single-cell responsesin striate cortex of kittens deprived of vision in one eye. J. Neurophysiol. 26, 1003–1018.

    PubMed  CAS  Google Scholar 

  • Wiesel T.N. and Hubel D.H. (1965) Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. J. Neurophysiol. 28, 1029–1040.

    PubMed  CAS  Google Scholar 

  • Williams R.W. and Chalupa L.M. (1982) Prenatal development of retino collicular projections in the cat; an anterograde tracer transport study. J. Neurosci. 2, 604–622.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bisti, S., Deplano, S., Gargini, C. (1998). Functional Consequences of Eliminating Prenatal Binocular Interactions. In: Chalupa, L.M., Finlay, B.L. (eds) Development and Organization of the Retina. NATO ASI Series, vol 299. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5333-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5333-5_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7433-6

  • Online ISBN: 978-1-4615-5333-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics