Skip to main content

Retinal Ganglion Cell Axonal Transport

Moving down the Road to Functional Connections

  • Chapter
Book cover Development and Organization of the Retina

Part of the book series: NATO ASI Series ((NSSA,volume 299))

  • 157 Accesses

Abstract

Retinal ganglion cells form the essential link between the eye and the brain, conveying visual information transduced at the retina for further visual processing in higher centers. In visual animals, this pathway is marked by a high order of functional and anatomical organization. Developmental studies are one approach aimed at understanding how global connectivity and the specificity of the primary visual projection is established. Since the formation of retinofugal pathways follows the general program of developmental events in the brain, developmental studies of this pathway also shed light on the formation of the neuronal network in general. A highly simplified view of the major developmental events in the nervous system would start with the generation of neuronal precursors, followed by neuronal differentiation which in the case of long projection neurons involves rapid axon outgrowth over considerable distances, the formation of synaptic relationships, and finally the efficient processing of neuronal signals along the neural network. The method described below is particularly adapted for studies of neuronal protein changes during the latter three stages of development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bajjaleih, S. M., Peterson, K., Shinghal, R. and Scheller, R.H., 1992, SV2, a synaptic vesicle protein homologous to bacterial transporters. Science 257: 1271–1273.

    Article  Google Scholar 

  • Benowitz, L.I. and Routtenberg, A., 1997, GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends Neurosci. 20:84–91.

    Article  PubMed  CAS  Google Scholar 

  • Bhide, P. G. and Frost, D.O., 1991, Stages of growth of hamster retinofugal axons: implications for developing pathways with multiple targets. J. Neurosci. 11: 485–504.

    PubMed  CAS  Google Scholar 

  • Breen, K.C., Bruce, M. and Anderton, B.H., 1991, Beta amyloid precursor protein mediates neuronal cell-cell and cell-surface adhesion. J. Neurosci. Res. 28: 90–100.

    Article  PubMed  CAS  Google Scholar 

  • Brugge, J.S., Cotton, P.C., Queral, A.E., Barrett, J.N., Nonner, D. and Keane, R.W., 1985, Neruons express high levels of a structurally modified, activated form of pp60c-src. Nature 316: 554–557.

    Article  PubMed  CAS  Google Scholar 

  • Buckley, K. and Kelly, R.B., 1985, Identification of a transmembrane glycoprotein specific for secretory vesicles of neural and endocrine cells. J. Cell Biol. 100: 1284–1294.

    Article  PubMed  CAS  Google Scholar 

  • Campbell, G., So, K.-F. and Lieberman, A.R., 1984, Normal post-natal development of retinogeniculate axons and terminals and identification of inappropriately-located transient synapses. Neurosci. 13:743–759.

    Article  CAS  Google Scholar 

  • Chen D. F., Jhaveri, S. and Schneider G.E., 1995, Intrinsic changes in developing retinal neurons result in regenerative failure of their axons. P. N. A. S. 92: 7287–7291.

    Article  PubMed  CAS  Google Scholar 

  • Confaloni A., Lyckman, A. W., Thinikaran, G., Sisodia, S.S. and Moya, K. L., 1995, APP and APLP2 localization in the developing hamster primary visual pathway. Neurosci. Abstr. 21: 1307.

    Google Scholar 

  • Confaloni, A., Lyckman, A.W. and Moya, K.L., 1997, Developmental shift of synaptic vesicle protein 2 (SV2) from axons to terminals in the primary visual projection of the hamster. Neuroscience 77: 1225–1236.

    Article  PubMed  CAS  Google Scholar 

  • Erzurumlu, R. S., Jhaveri, S. and Schneider, G.E., 1988, Distribution of morphologically different retinal axon terminals in the hamster dorsal lateral geniculate nucleus. Brain Res. 461: 175–181.

    Article  PubMed  CAS  Google Scholar 

  • Feany, M. B., Lee, S., Edwards, R.H. and Buckley, K.M., 1992, The synaptic vesicle protein SV2 is a novel type of transmembrane transporter. Cell 70: 861–867.

    Article  PubMed  CAS  Google Scholar 

  • Frost, D.O., So, K.-F. and Schneider, G.E., 1979, Postnatal development of retinal projections in Syrian hamsters: a study using autoradiographic and anterograde degeneration techniques. Neurosci. 4: 1649–1677.

    Article  CAS  Google Scholar 

  • Hammerschlag, R. and Stone, G.C., 1982, Membrane delivery by fast axonal transport. Trends in Neurosci. 5:12.

    Article  Google Scholar 

  • Hayashi, T., MacMahon, H., Yamasaki, S., Binz, T., Südhof, T.C. and Nieman, H., 1995, Synaptic vesicle membrane fusion complex: action of clostidial neurotoxins on assembly. EMBO J. 13: 5051–5061.

    Google Scholar 

  • Hirokawa, N., 1993, Axonal transport and the cytoskeleton. Curr. Op. Neurobiol. 3: 724–731.

    Article  PubMed  CAS  Google Scholar 

  • Hortsch, M., 1996, The L1 family of neural cell adhesion molecules: old proteins performing new tricks. Neuron 17:587–593.

    Article  PubMed  CAS  Google Scholar 

  • Hynes, R.O., 1982, Phosphorylation of vinculin by pp60src: what it might mean. Cell 28: 437–438.

    Article  PubMed  CAS  Google Scholar 

  • Jhaveri, S., Edwards, M.A. and Schneider, G.E., 1991, Initial stages of retinofugal axon development in the hamster: evidence for two distinct modes of growth. Exp. Brain Res. 87: 371–382.

    Article  PubMed  CAS  Google Scholar 

  • Jhaveri, S., Erzurumlu, R.S. and Schneider, G.E., 1996, The optic tract in embryonic hamsters: fasciculation, de-fasciculation, and other rearrangements of retinal axons. Visual Neurosci. 13: 359–374.

    Article  CAS  Google Scholar 

  • Loewy, A., Liu, W.-S., Baitinger, C., and Willard, M.B., 1991, The major 35S-methionine-labeled rapidly transported protein (Superprotein) is identical to SNAP-25, a protein of synaptic terminals. J. Neurosci. 11: 3412–3421.

    PubMed  CAS  Google Scholar 

  • Lüthi, A., Laurent, J.P., Figurov, A., Muller D. and Schachner, M., 1994, Hippocampal long-term potentiation and neural cell adhesion molecules L1 and NCAM. Nature 372: 777–779.

    Article  Google Scholar 

  • Lyckman, A.W., Confaloni, A.M., Thinikaran, G., Sisodia S.S., DiGiamberardino, L., and Moya, K.L., 1995, In vivo turnover of synaptic and cytoskeletal proteins rapidly transported to adult CNS nerve terminals. Neuroscience Abstracts, 21: 50.

    Google Scholar 

  • Maness, P.F., Aubry, M., Shores, C.G., Frame, L. and Pfenninger, K.H., 1988, c-src gene product in developing rat brain is enriched in nerve growth cone membranes. P.N. A.S. 85: 5001–5005.

    Article  PubMed  CAS  Google Scholar 

  • McFarlane, I., Breen, K.C., DiGiamberardino, L. and Moya, K.L., 1997, Inhibition of N-glycan processing alters axonal transport in vivo. Neuroscience Abstracts, in press.

    Google Scholar 

  • Milward, E.A., Papadopoulos, R., Fuller, S.J., Moir, R.D., Small, D., Beyreuther, K. and Masters, C.L., 1992, The amyloid protein precursor of Alzheimer’s disease is a mediator of the effects of nerve growth factor on neurite outgrowth. Neuron 9: 129–137.

    Article  PubMed  CAS  Google Scholar 

  • Moya, K. L., Jhaveri, S., Benowitz, L.I. and Schneider, G.E., 1988, Changes in rapidly transported proteins in developing hamster retinofugal axons. J. Neurosci. 8: 4445–4454.

    PubMed  CAS  Google Scholar 

  • Moya, K. L., Jhaveri, S., Schneider, G.E. and Benowitz, L.I., 1989, Immunohistochemical localization of GAP-43 in the developing hamster retinofugal pathway. J. Comp. Neurol. 288: 51–58.

    Article  PubMed  CAS  Google Scholar 

  • Moya, K.L., Benowitz, L.I. and Schneider, G.E., 1990, Abnormal retinal projections suppress GAP-43 in the di-encephalon. Brain Res. 527: 259–265.

    Article  PubMed  CAS  Google Scholar 

  • Moya, K.L., Benowitz, L.I., Sabel, B.A. and Schneider, G.E., 1992, Changes in rapidly transported proteins associated with development of abnormal projections in the diencephalon. Brain Res. 586: 265–272.

    Article  PubMed  CAS  Google Scholar 

  • Moya, K. L., Benowitz, L.I., Schneider, G.E. and Allinquant, B., 1994a, The amyloid precursor protein is develop-mentally regulated and correlated with synaptogenesis. Dev. Biol. 161: 597–603.

    Article  PubMed  CAS  Google Scholar 

  • Moya, K.L., Confaloni, A. and Allinquant, B., 1994b, In vivo neuronal synthesis and axonal transport of KPI-con-taining forms of the amyloid precursor protein. J. Neurochem. 63: 1971–1974.

    Article  PubMed  CAS  Google Scholar 

  • Neve, R.L., Finch E.A. and Dawes, L.R., 1988, Expression of the Alzheimer amyloid precursor gene transcripts in the human brain. Neuron 1: 669–677.

    Article  PubMed  CAS  Google Scholar 

  • Nitsch, R.M., Farber, S.A., Growdon, J.H. and Wurtman, R.J., 1993, Release of amyloid β-protein precursor derivatives by electrical depolarization of rat hippocampal slices. P.N.A.S. 90: 5191–5193.

    Article  PubMed  CAS  Google Scholar 

  • Nixon, R.A., 1992, Slow axonal transport. Curr. Op. Cell Biol. 4: 8–14.

    Article  PubMed  CAS  Google Scholar 

  • O’Hara, B.F., Fisher, S., Oster-Granite, M.L., Gearhart, J.D. and Reeves, R.H., 1989, Developmental expression of the amyloid precursor protein, growth-associated protein 43 and somatostatin in normal and trisomy 16 mice. Dev. Brain Res. 49: 300–304.

    Article  Google Scholar 

  • Okada, M., Erickson, A. and Hendrickson, A., 1994, Light and electron-microscopic analysis of synaptic development in Macaca monkey retina as detected in immunocytochemical labeling for the synaptic vesicle protein SV2. J. Comp. Neurol. 339: 535–558.

    Article  PubMed  CAS  Google Scholar 

  • Perrone-Bizzozero, N.I., Benowitz, L.I., Apostilides, P.J., Franck, E.R., Finkelstein, S.P. and Bizzozero, O.A., 1989, Protein fatty acid acylation in developing cortical neurons. J. Neurochem. 52: 1149–1155.

    Article  PubMed  CAS  Google Scholar 

  • Rutishauser, U., 1984, Developmental biology of a neural cell adhesion molecule. Nature 310: 549–554.

    Article  PubMed  CAS  Google Scholar 

  • Schneider, G.E., Jhaveri, S., Edwards, M.A. and So, K.-F., 1985, Regeneration, re-routing, and redistribution of axons after early lesions: changes with age, and functional impact. In J. C. Eccles and M.R. Dimitrijevic, (eds.): Recent Achievements in Restorative Neurology, Vol 1. Upper Motor Function and Dysfunction. Basel: Karger, pp. 291–310.

    Google Scholar 

  • Schubert, D., Jin, L.-W., Saitoh, T. and Cole, G., 1989, The regulation of amyloid β protein precursor secretion and its modulatory role in cell adhesion. Neuron 3: 689–694.

    Article  PubMed  CAS  Google Scholar 

  • Schubert, W., Prior, R., Weidemann, A., Dircksen, H., Multhaup, G., Masters, C.L. and Beyreuther, K., 1991, Localization of Alzheimer βA4 amyloid precursor protein at central and peripheral synaptic sites. Brain Res. 563: 184–194.

    Article  PubMed  CAS  Google Scholar 

  • Selkoe, D., 1994, Normal and abnormal biology of the β-amyloid precursor protein. Annu. Rev. Neurosci. 17: 489–517.

    Article  PubMed  CAS  Google Scholar 

  • Skene, J.H.P., 1989, Axonal growth-associated proteins. Annu. Rev. Neurosci. 12: 127–156.

    Article  PubMed  CAS  Google Scholar 

  • Steedman, J.G. and Landreth, G.E., 1989, Expression of pp60c-src in adult and developing rat central nervous system. Dev. Brain Res. 45:161–167.

    Article  CAS  Google Scholar 

  • Stettler, O., Moya, K.L., Zahraoui, A. and Tavitian, B., 1994, Developmental changes in the localisation of the synaptic vesicle protein rab3A in rat brain. Neurosci. 62: 587–600.

    Article  CAS  Google Scholar 

  • Stettler, O., Tavitian, B. and Moya, K.L., 1996, Differential synaptic vesicle protein expression in the barrel field of developing cortex. J. Comp. Neurol. 375: 321–332.

    Article  PubMed  CAS  Google Scholar 

  • Strittmatter, S.M., Frankhauser, C., Huang, P.L., Mashimo, H. and Fishman, M.C., 1995, Neuronal pathfinding is abnormal in mice lacking the neuronal growth cone protein GAP-43. Cell 80: 445–452.

    Article  PubMed  CAS  Google Scholar 

  • Thinikaran, G., Kitt, C.A., Roskams, A.J.I., Slunt, H.H., Masliah, E., von Koch, C., Ginsberg, S.D., Ronnett, G.V., Reed, R.R., Price, D.L. and Sisodia, S.S., 1995, Distribution of an APP homolog, APLP2, in the mouse olfactory system: a potential role for APLP2 in axogenesis. J. Neurosci. 15: 6314–6326.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Moya, K.L. (1998). Retinal Ganglion Cell Axonal Transport. In: Chalupa, L.M., Finlay, B.L. (eds) Development and Organization of the Retina. NATO ASI Series, vol 299. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5333-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5333-5_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7433-6

  • Online ISBN: 978-1-4615-5333-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics