Skip to main content

Biosynthesis of Rhizobial Exopolysaccharides and Their Role in the Root Nodule Symbiosis of Leguminous Plants

  • Chapter

Part of the book series: Recent Advances in Phytochemistry ((RAPT,volume 32))

Abstract

Bacteria belonging to the genera Rhizobium, Bradyrhizobium, Sinorhizobium, Mesorhizobium, and Azorhizobium, commonly called rhizobia, are able to elicit the formation of nodules on the roots of leguminous plants which can be considered as new plant organs. Inside these organs, the rhizobia are present as dinitrogen-fixing organelles maintained by the plant in return for ammonia. Characteristic of this symbiosis is that rhizobia infect living plant cells by an endocytotical process. For a detailed survey of the Rhizobium infection process, we refer to a review by Kijne.1 Briefly, the rhizobia attach to growing root hairs and provoke tight root hair curls in which they are trapped. Simultaneously, rhizobia induce cell divisions in the root cortex, resulting in the formation of a nodule primordium. Starting from the root hair curl, the rhizobia invade the plant through infection threads (tip-growing tubular structures containing rhizobia), are endocytosed by young nodule cells, and differentiate into dinitrogen-fixing bacteroids. This symbiotic association is host-plant-specific, i.e., one rhizobial strain can infect only a limited number of different hosts. For example, R. leguminosarum bv. viciae can induce formation of dinitrogen-fixing nodules on Pisum, Vicia, Lathyrus, and Lens, whereas R. leguminosarum bv. trifolii nodulates Trifolium species (see Table 1).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. KIJNE, J.W. 1992. The Rhizobium infection process. In: Biological Nitrogen Fixation (G. Stacey, R.H. Burns, H.J. Evans, eds.), Chapman and Hall, New York, London, pp. 349–398.

    Google Scholar 

  2. SPAINK, H.P. 1996. Regulation of plant morphogenesis by lipo-chitin oligosaccharides. Crit. Rev. Plant Sci. 15: 559–582.

    CAS  Google Scholar 

  3. LJUNGGREN, H., FÅHRAEUS, G. 1959. Effect of Rhizobium polysaccharide on the formation of polygalacturonase in lucerne and clover. Nature (London) 184: 1578–1579.

    Article  CAS  Google Scholar 

  4. GIL-SERRANO, A., GONZÁLEZ-JIMÉNEZ, I., TEJERO-MATEO, P., SÁNCHEZ DEL JUNCO, A. 1992. Structure of the acidic exopolysaccharide secreted by Rhizobium leguminosarum biovar. phaseoli CFN42. Carbohydr. Res. 225: 169–174.

    Article  PubMed  CAS  Google Scholar 

  5. ROBERTSON, B.K., ÅMAN, P., DARVILL, A.G., McNEIL, M., ALBERSHEIM, P. 1981. Host-symbiont interactions. V. The structure of acidic extracellular polysaccharides secreted by Rhizobium leguminosarum and Rhizobium trifolii. Plant Physiol. 67: 389–400.

    Article  Google Scholar 

  6. McNEIL, M., DARVILL, J., DARVILL, A., ALBERSHEIM, P., VAN VEEN, R., HOOYKAAS, P., SCHILPEROORT, R., DELL, A. 1986. The discernible structural features of the acidic exopolysaccharides secreted by different Rhizobium species are the same. Carbohydr. Res. 146: 307–326.

    Article  CAS  Google Scholar 

  7. DUDMAN, W.F., FRANZÉN, L.-E., DARVILL, J.E., McNEIL, M., DARVILL, A.G., ALBERSHEIM, P. 1983. The structure of the acidic polysaccharide secreted by Rhizobium phaseoli strain 127 K36. Carbohydr. Res. 117: 141–156.

    Article  CAS  Google Scholar 

  8. PHILIP-HOLLINGSWORTH, S., HOLLINGSWORTH, R.I., DAZZO, F.B., DJORDJEVIC, M.A., ROLFE, B.G. 1989. The effect of interspecies transfer of Rhizobium host-specific nodulation genes on acidic polysaccharide structure and in situ binding by host lectin. J. Biol. Chem. 264: 5710–5714.

    PubMed  CAS  Google Scholar 

  9. KUO, M.-S.K., MORT, A.J. 1986. Location and identity of acyl substituents on the extracellular polysaccharides of R. trifolii and R. leguminosarum. Carbohydr. Res. 145: 247–265.

    Article  PubMed  CAS  Google Scholar 

  10. PHILIP-HOLLINGSWORTH, S., HOLLINGSWORTH, R.I., DAZZO, F.B. 1989. Host-range related structural features of the acidic extracellular polysaccharides of Rhizobium trifolii and Rhizobium leguminosarum. J. Biol. Chem. 264: 1461–1466.

    PubMed  CAS  Google Scholar 

  11. CANTER CREMERS, H.C.J., BATLEY, M., REDMOND, J.W., WIJFJES, A.H.M., LUGTENBERG, B.J.J., WIJFFELMAN, C.A. 1991. Distribution of O-acetyl groups in the exopolysaccharide synthesized by Rhizobium leguminosarum strains is not determined by the Sym plasmid. J. Biol. Chem. 266: 9556–9564.

    Google Scholar 

  12. ORGAMBIDE, G., PHILIP-HOLLINGSWORTH, S., CARGILL, L., DAZZO, F. 1992. Evaluation of acidic heteropolysaccharide structures in Rhizobium leguminosarum biovars altered in nodulation genes and host range. Mol. Plant-Microbe Interact. 5: 484–488.

    Article  PubMed  CAS  Google Scholar 

  13. LOPEZ-LARA, I.M., ORGAMBIDE, G., DAZZO, F.B., OLIVARES, J., TORO, N. 1993. Characterization and symbiotic importance of acidic extracellular polysaccharides of Rhizobium sp. strain GRH2 isolated from acacia nodules. J. Bacteriol. 175: 2826–2832.

    PubMed  CAS  Google Scholar 

  14. FRANZÉN, L.-E., DUDMAN, W.F., McNEIL, M., DARVILL, A.G., ALBERSHEIM, P. 1983. The structure of the acidic polysaccharide secreted by Rhizobium phaseoli strain 127 K44. Carbohydr. Res. 117:157–167.

    Article  Google Scholar 

  15. AMEMURA, A., HARADA, T., ABE, M., HIGASHI, S. 1983. Structural studies on the extracellular acidic polysaccharide from Rhizobium trifolii 4S. Carbohydr. Res. 115: 165–174.

    Article  CAS  Google Scholar 

  16. DUDMAN, W.F., FRANZÉN, L.-E., McNEIL, M., DARVILL, A.G., ALBERSHEIM, P. 1983. The structure of the acidic polysaccharide secreted by Rhizobium phaseoli strain 127K87. Carbohydr. Res. 117: 169–183.

    Article  CAS  Google Scholar 

  17. ÅMAN, P., FRANZÉN, L.-E., DARVILL, J.E., McNEIL, M., DARVILL, A.G., ALBERSHEIM, P. 1982. The structure of the acidic polysaccharide secreted by Rhizobium phaseoli strain 127 K38. Carbohydr. Res. 103: 77–100.

    Article  Google Scholar 

  18. CANTER CREMERS, H.C.J., STEVENS, K., LUGTENBERG, B.J.J., WIJFFELMAN, C.A., BATLEY, M., REDMOND, J.W., BREEDVELD, M.W., ZEVENHUIZEN, L.RT.M. 1991. Unusual structure of the exopolysaccharide of Rhizobium leguminosarum bv. viciae strain 248. Carbohydr. Res. 218: 185–200.

    Article  Google Scholar 

  19. AMAN, P., McNEIL, M., FRANZEN, L.-E., DARVILL, A.G., ALBERSHEIM, P. 1981. Structural elucidation, using H.P.L.C.-M.S. and G.L.C.-M.S., of the acidic polysaccharide secreted by Rhizobium meliloti strain 1021. Carbohydr. Res. 95: 263–282.

    Article  CAS  Google Scholar 

  20. JANSSON, P.-E., KENNE, L., LINDBERG, B., LJUNGGREN, H., LONNGREN, J., RUDEN, U., SVENSSON, S. 1977. Demonstration of an octasaccharide repeating unit in the extracellular polysaccharide of Rhizobium meliloti by sequential degradation. J. Am. Chem. Soc. 99: 3812–3815.

    Article  PubMed  CAS  Google Scholar 

  21. HARADA, T., AMEMURA, A., JANSSON, P.-E., LINDBERG, B. 1979. Comparative studies of polysaccharides elaborated by Rhizobium, Alcaligenes and Agrobacterium. Carbohydr. Res. 77: 285–288.

    Article  PubMed  CAS  Google Scholar 

  22. HISAMATSU, M., SANO, K., AMEMURA, A., HARADA, T. 1978. Acidic polysaccharides containing succinic acid in various strains of Agrobacterium. Carbohydr. Res. 61: 89–96.

    Article  CAS  Google Scholar 

  23. HISAMATSU, M., ABE, J., AMEMURA, A., HARADA, T. 1980. Structural elucidation of succinoglycan and related polysaccharides from Agrobacterium and Rhizobium by fragmentation with two special β-D-glycanases and methylation analysis. Agric. Biol. Chem. 44: 1049–1055.

    Article  CAS  Google Scholar 

  24. ZEVENHUIZEN, L.P.T.M. 1973. Methylation analysis of acidic exopolysaccharides of Rhizobium and Agrobacterium. Carbohydr. Res. 26: 409–419.

    Article  CAS  Google Scholar 

  25. GIL-SERRANO, A., SANCHEZ DEL JUNCO, A., TEJERO-MATEO, P. 1990. Structure of the extracellular polysaccharide secreted by Rhizobium leguminosarum var. phaseoli CIAT 899. Carbohydr. Res. 204: 103–107.

    Article  PubMed  CAS  Google Scholar 

  26. AMEMURA, A., HARADA, T. 1983, Structural studies on extracellular acidic polysaccharides secreted by three non-nodulating rhizobia. Carbohydr. Res. 112: 85–93.

    Article  CAS  Google Scholar 

  27. HIGASHI, S., ABE, M. 1978. Phage induced depolymerase for exopolysaccharide of rhizobiaceae. J. Gen. Appl. Microbiol. 24: 143–153.

    Article  CAS  Google Scholar 

  28. DJORDJEVIC, S.P., BATLEY, M., REDMOND, J.R., ROLFE, B.G. 1986. The structure of the exopolysaccharide from Rhizobium sp. strain ANU280 (NGR234). Carbohydr. Res. 148: 87–99.

    Article  CAS  Google Scholar 

  29. DUDMAN, W.F. 1976. The extracellular polysaccharides of Rhizobium japonicum: compositional studies. Carbohydr. Res. 46: 97–110.

    Article  CAS  Google Scholar 

  30. KENNEDY, L.D., BAILEY, R.W. 1976. Monomethyl sugars in extracellular polysaccharides from slow-growing Rhizobia. Carbohydr. Res. 49: 451–454.

    Article  PubMed  CAS  Google Scholar 

  31. KENNEDY, L.D. 1976. Isolation of 3-O-methyl-D-ribose from a Rhizobium polysaccharide. Carbohydr. Res. 52: 259–261.

    Article  PubMed  CAS  Google Scholar 

  32. MORT, A.J., BAUER, W.D. 1982. Application of two new methods for cleavage of polysaccharides into specific oligosaccharide fragments. J. Biol. Chem. 257: 1870–1875.

    PubMed  CAS  Google Scholar 

  33. PUVANESARAJAH, V., SCHELL, F.M., GERHOLD, D., STACEY, G. 1987. Cell surface polysaccharide from Bradyrhizobium japonicum and a non-nodulating mutant. J. Bacteriol. 169: 137–141.

    PubMed  CAS  Google Scholar 

  34. DUDMAN, W.F. 1978. Structural studies of the extracellular polysaccharides of Rhizobium japonicum strains 71A, CC708 and CB1795. Carbohydr. Res. 66: 9–23.

    Article  CAS  Google Scholar 

  35. HER, G.-R., GLAZEBROOK, J., WALKER, G.C., REINHOLD, V.N. 1990. Structural studies of a novel exopolysaccharide produced by a mutant of Rhizobium meliloti strain Rm 1021. Carbohydr. Res. 198: 305–312.

    Article  PubMed  CAS  Google Scholar 

  36. ZHAN, H., LEE, C.C., LEIGH, J.A. 1991. Induction of the second exopolysaccharide (EPSb) in Rhizobium meliloti SU47 by low phosphate concentrations. J. Bacteriol. 173: 7391–7394.

    PubMed  CAS  Google Scholar 

  37. GLAZEBROOK, J., WALKER, G.C. 1989. A novel exopolysaccharide can function in place of the calcofluor-binding exopolysaccharide in nodulation of alfalfa by Rhizobium meliloti. Cell 56: 661–672.

    Article  PubMed  CAS  Google Scholar 

  38. ZHAN, H., LEVERY, S.B., LEE, C.C., LEIGH, J.A. 1989. A second exopolysaccharide of Rhizobium meliloti strain SU47 that can function in root nodule invasion. Proc. Natl. Acad. Sci. USA 86: 3055–3059.

    Article  PubMed  CAS  Google Scholar 

  39. STREETER, J.G., SALMINEN, S.O., WHITMOYER, R.E., CARLSON, R.W. 1992. Formation of novel polysaccharides by Bradyrhizobium japonicum bacteroids in soybean nodules. Appl. Environ. Microbiol. 58: 607–613.

    PubMed  CAS  Google Scholar 

  40. STREETER, J.G., SALMINEN, S.O., BEUERLEIN, J.E., SCHMIDT, W.H. 1994. Factors influencing the synthesis of polysaccharide by Bradyrhizobium japonicum bacteroids in fieldgrown soybean nodules. Appl. Environ. Microbiol. 60: 2939–2943.

    PubMed  CAS  Google Scholar 

  41. AN, J.H., CARLSON, R.W., GLUSHKA, J., STREETER, J.G. 1995. The structure of a novel polysaccharide produced by Bradyrhizobium species within soybean nodules. Carbohydr. Res. 269:303–317.

    Article  PubMed  CAS  Google Scholar 

  42. SUTHERLAND, I.W. 1982. Biosynthesis of microbial exopolysaccharides. Adv. Microbiol. Physiol. 23: 79–150.

    Article  CAS  Google Scholar 

  43. TROY, F.A., FRERMAN, F.E., HEATH, E.C. 1971. The biosynthesis of capsular polysaccharide in Aerobacter aerogenes. J. Biol. Chem. 246: 118–133.

    PubMed  CAS  Google Scholar 

  44. VANDERSLICE, R.W., DOHERTY, D.H., CAPAGE, M.A., BETLACH, M.R., HASSLER, R.A., HENDERSON, N.M., RYAN-GRANIERO, J., TECKLENBURG, M. 1989. Genetic engineering of polysaccharide structure in Xanthomonas campestris. In: Biomedical and Biotechnological Advances in Industrial Polysaccharides (V. Crescenzi, I.C.M. Dea, S. Paoletti, S.S. Stivala, I.W. Sutherland, eds.), Gordon and Breach Science Publishers, New York, pp. 145–156.

    Google Scholar 

  45. CAPAGE, M.A., DOHERTY, D.H., BETLACH, M.R., VANDERSLICE, R.W. 1987. Recombinant-DNA mediated production of xanthan gum. International patent W087/05938.

    Google Scholar 

  46. IELPI, L., COUSO, R.O., DANKERT, M.A. 1993. Sequential assembly and polymerization of the polyprenol-linked pentasaccharide repeating unit of the xanthan polysaccharide in Xanthomonas campestris. J. Bacteriol. 175: 2490–2500.

    PubMed  CAS  Google Scholar 

  47. REUBER, T.L., WALKER, G.C. 1993. Biosynthesis of succinoglucan, a symbolically important exopolysaccharide of Rhizobium meliloti. Cell 74: 269–280.

    Article  PubMed  CAS  Google Scholar 

  48. BECKER, A., KLEICKMANN, A., ARNOLD, W., PÜHLER, A. 1993. Analysis of the Rhizobium meliloti exoH/exoK/exoL fragment: ExoK shows homology to excreted endo-β-1,3-1,4-glucanases and ExoH resembles membrane proteins. Mol. Gen. Genet. 238: 145–154.

    PubMed  CAS  Google Scholar 

  49. BECKER, A., KLEICKMANN, A., KELLER, M., ARNOLD, W., PÜHLER, A. 1993. Identification and analysis of the Rhizobium meliloti exoAMONP genes involved in exopolysaccharide biosynthesis and mapping of promoters located on the exoHKLAMONP fragment. Mol. Gen. Genet. 241: 367–379.

    Article  PubMed  CAS  Google Scholar 

  50. BECKER, A., KLEICKMANN, A., KÜSTER, H., KELLER, M., ARNOLD, W., PÜHLER, A. 1993. Analysis of the Rhizobium meliloti genes exoU, exoV, exoW, exoT and exol involved in exopolysaccharide biosynthesis and nodule invasion: exoU and exoW probably encode glucosyltransferases. Mol. Plant-Microbe Interact. 6: 735–744.

    Article  PubMed  CAS  Google Scholar 

  51. BUENDIA, A.M., ENENKEL, B., KÖPLIN, R., NIEHAUS, K., ARNOLD, W., PÜHLER, A. 1991. The Rhizobium meliloti exoZ/exoB fragment of megaplasmid2: ExoB functions as a UDP-glucose 4-epimerase and ExoZ shows homology to NodX of Rhizobium leguminosarum biovar viciae strain TOM. Mol. Microbiol. 5: 1519–1530.

    Article  PubMed  CAS  Google Scholar 

  52. GLUCKSMANN, M.A., REUBER, T.L., WALKER, G.C. 1993. Genes needed for the modification, polymerization, export, and processing of succinoglycan by Rhizobium meliloti: A model for succinoglycan biosynthesis. J. Bacteriol. 175: 7045–7055.

    PubMed  CAS  Google Scholar 

  53. GLUCKSMANN, M.A., REUBER, T.L., WALKER, G.C. 1993. Family of glycosyl transferases needed for the synthesis of succinoglycan by Rhizobium meliloti. J. Bacteriol. 175: 7033–7044.

    PubMed  CAS  Google Scholar 

  54. MÜLLER, P., KELLER, M., WENG, W.M., QUANDT, J., ARNOLD, W., PÜHLER, A. 1993. Genetic analysis of the Rhizobium meliloti exoYFQ operon: ExoY is homologous to sugar transferases and ExoQ represents a transmembrane protein. Mol. Plant-Microbe Interact. 6: 55–65.

    Article  PubMed  Google Scholar 

  55. LEIGH, J.A., REED, J.W., HANKS, J.F., HIRSCH, A.M., WALKER, G.C. 1987. Rhizobium meliloti mutants that fail to succinylate their calcofluor-binding exopolysaccharide are defective in nodule invasion. Cell 51: 579–587.

    Article  PubMed  CAS  Google Scholar 

  56. CANTER CREMERS, H.C.J., BATLEY, M., REDMOND, J.W., EYSDEMS, L., BREEDVELD, M.W., ZEVENHUIZEN, L.P.T.M., PEES, E., WIJFFELMAN, C.A., LUGTENBERG, B.J.J. 1990. Rhizobium leguminosarum exoB mutants are deficient in the synthesis of UDP-glucose 4’-epimerase. J. Biol. Chem. 265: 21122–21127.

    Google Scholar 

  57. REUBER, T.L., WALKER, G.C. 1993. The acetyl substituent of succinoglycan is not neccessary for alfalfa invasion by Rhizobium meliloti Rml021. J. Bacteriol. 175: 3653–3655.

    PubMed  CAS  Google Scholar 

  58. BECKER, A., RÜBERG, S., KÜSTER, H., ROXLAU, A.A., KELLER, M., IVASHINA, T., CHENG, H.-P., WALKER, G.C., PÜHLER, A. 1997. The 32-kilobase exp gene cluster of Rhizobium meliloti directing the biosynthesis of galactoglucan: Genetic organization and properties of the encoded gene products. J. Bacteriol. 179: 1375–1384.

    PubMed  CAS  Google Scholar 

  59. LONG, S., REED, J.W., HIMAWAN, J., WALKER, G.C. 1988. Genetic analysis of a cluster of genes required for synthesis of the calcofluor-binding exopolysaccharide of Rhizobium meliloti. J. Bacteriol. 170: 4239–4248.

    PubMed  CAS  Google Scholar 

  60. UTTARO, A.D., CANGELOSI, G.A., GEREMIA, R.A., NESTER, E.W., UGALDE, R.A. 1990. Biochemical characterization of avirulent exoC mutants of Agrobacterium tumefaciens. J. Bacteriol. 171: 1640–1646.

    Google Scholar 

  61. REED, J.W., CAPAGE, M.L., WALKER, G.C. 1991. Rhizobium meliloti exoG and exoJ mutations affect the ExoX-ExoY system for modulation and exopolysaccharide production. J. Bacteriol. 173:3776–3788.

    PubMed  CAS  Google Scholar 

  62. BECKER, A., NIEHAUS, K., PÜHLER, A. 1995. Low-molecular-weight succinoglycan is predominantly produced by Rhizobium meliloti strains carrying a mutated ExoP protein characterized by a periplasmic N-terminal domain and a missing C-terminal domain. Mol. Microbiol. 16: 191–203.

    Article  PubMed  CAS  Google Scholar 

  63. BECKER, A., KÜSTER, H., NIEHAUS, K., PÜHLER, A. 1995. Extension of the rhizobium meliloti succinoglycan biosynthesis gene cluster: Identification of the exsA gene encoding an ABC transporter protein, and the exsB gene which probably codes for a regulator of succinoglycan biosynthesis. Mol. Gen. Genet. 249: 487–497.

    Article  PubMed  CAS  Google Scholar 

  64. LEIGH, J.A., SIGNER, E.R., WALKER, G.C. 1985. Exopolysaccharide deficient mutants of Rhizobium meliloti that form ineffective nodules. Proc. Natl. Acad. Sci. USA 82: 6231–6235.

    Article  PubMed  CAS  Google Scholar 

  65. BREEDVELD, M.W., ZEVENHUIZEN, L.P.T.M., ZEHNDER, A.J.B. 1990. Osmotically induced oligo-and polysaccharide synthesis by Rhizobium meliloti SU-47. J. Gen. Microbiol. 136:2511–2519.

    Article  CAS  Google Scholar 

  66. DOHERTY, D., LEIGH, J.A., GLAZEBROOK, J., WALKER, G.C. 1988. Rhizobium meliloti mutants that overproduce the R. meliloti acidic calcofluor-binding exopolysaccharide. J. Bacteriol. 170: 4249–4256.

    PubMed  CAS  Google Scholar 

  67. REED, J., GLAZEBROOK, J., WALKER, G.C. 1991. The exoR gene of Rhizobium meliloti affects RNA levels of other exo genes but lacks homology to known transcriptional regulators. J. Bacteriol. 173: 3789–3794.

    PubMed  CAS  Google Scholar 

  68. REUBER, T.L., LONG, S., WALKER, G.C. 1991. Regulation of Rhizobium meliloti exo genes in free-living cells and in planta examined using TnphoA fusions. J. Bacteriol. 173: 426–434.

    PubMed  CAS  Google Scholar 

  69. GRAY, J.X., DJORDJEVIC, M.A., ROLFE, B.G. 1990. Two genes that regulate exopolysaccharide production in Rhizobium sp. strain NGR234: DNA sequences and resultant phenotypes. J. Bacteriol. 172: 193–203.

    PubMed  CAS  Google Scholar 

  70. ZHAN, H., LEIGH, J.A. 1990. Two genes that regulate exopolysaccharide production in Rhizobium meliloti. J. Bacteriol. 172: 5254–5259.

    PubMed  CAS  Google Scholar 

  71. LEVERY, S.B., ZHAN, H., LEE, C.C., LEIGH, J.A., HAKOMORI, S. 1991. Structural analysis of a second acidic exopolysaccharide of Rhizobiwn meliloti that can function in alfalfa root nodule invasion. Carbohydr. Res. 210: 339–347.

    Article  PubMed  CAS  Google Scholar 

  72. KELLER, M., ROXLAU, A., WENG, W.M., SCHMIDT, M., QUANDT, J., NIEHAUS, K., JORDING, D., ARNOLD, W., PÜHLER, A. 1995. Molecular analysis of the Rhizobium meliloti mucR gene regulating the biosynthesis of the exopolysaccharides succinoglycan and galactoglucan. Mol. Plant-Microbe Interact. 8: 267–277.

    Article  PubMed  CAS  Google Scholar 

  73. LEIGH, J.A., LEE, C.C. 1988. Characterization of polysaccharides of Rhizobium meliloti exo mutants that form ineffective nodules. J. Bacteriol. 170: 3327–3332.

    PubMed  CAS  Google Scholar 

  74. REED, J.W., WALKER, G.C. 1991. Acidic conditions permit effective nodulation of alfalfa by invasion-deficient Rhizobium meliloti exoD mutants. Genes & Development 5: 2274–2287.

    Article  CAS  Google Scholar 

  75. BORTHAKUR, D., BARBER, C.E., LAMB, J.W., DANIELS, M.J., DOWNIE, J.A., JOHNSTON, A.W.B. 1986. A mutation that blocks exopolysaccharide synthesis prevents nodulation of peas by Rhizobium leguminosarum but not of beans by R. phaseoli and is corrected by cloned DNA from Rhizobium or the phytopathogen Xanthomonas. Mol. Gen. Genet. 203: 320–323.

    Article  CAS  Google Scholar 

  76. CHAKRAVORTY, A.K., ZURKOWSKI, W., SHINE, J., ROLFE, B.G. 1982. Symbiotic nitrogen fixation: Molecular cloning of Rhizobium genes involved in exopolysaccharide synthesis and effective nodulation. J. Mol. Appl. Genet. 1: 585–596.

    PubMed  CAS  Google Scholar 

  77. CHEN, H., BATLEY, M., REDMOND, J., ROLFE, B.G. 1985. Alteration of the effective nodulation properties of fast growing broad host range Rhizobium due to changes in exopolysaccharide synthesis. J. Plant Physiol. 120: 331–349.

    Article  CAS  Google Scholar 

  78. HOTTER, G.S., SCOTT, D.B. 1991. Exopolysaccharide mutants of Rhizobium loti are fully effective on a determinate nodulating host but are ineffective on an indeterminate nodulating host. J. Bacteriol. 173: 851–859.

    PubMed  CAS  Google Scholar 

  79. DIEBOLD, R., NOEL, K.D. 1989. Rhizobium leguminosarum exopolysaccharide mutants: Biochemical and genetic analyses and symbiotic behavior on three hosts. J. Bacteriol. 171: 4821–4830.

    PubMed  CAS  Google Scholar 

  80. KIM, C.-H., TULLY, R.E., KEISTER, D.L. 1989. Exopolysaccharide-deficient mutants of Rhizobium fredii HH303 which are symbiotically effective. Appl. Environ. Microbiol. 55: 1852–1854.

    PubMed  CAS  Google Scholar 

  81. MILNER, J.L., ARAUJO, R.S., HANDELSMAN, J. 1992. Molecular and symbiotic characterization of exopolysaccharide-deficient mutants of Rhizobium tropici strain CIAT899. Mol. Microbiol. 6:3137–3147.

    Article  PubMed  CAS  Google Scholar 

  82. PARNISKE, M., KOSCH, K., WERNER, D., MÜLLER, P. 1993. ExoB mutants of Bradyrhizobium japonicum with reduced competitiveness for nodulation of Glycine max. Mol. PlantMicrobe Interact. 6: 99–106.

    Article  CAS  Google Scholar 

  83. ZDOR, H., PUEPPKE, S.G. 1991. Nodulation competitiveness of Tn5-induced mutants of Rhizobium fredii USDA208 that are altered in motility and extracellular polysaccharide production. Can. J. Microbiol. 37: 52–58.

    Article  CAS  Google Scholar 

  84. EGGLESTON, G., HUBER, M.C., LIANG, R.T., KARR, A.L., EMERICH, D.W. 1996. Bradyrhizobium japonicum mutants deficient in exo and capsular polysaccharides cause delayed infection and nodule initiation. Mol. Plant-Microbe Interact. 9: 419–423.

    Article  CAS  Google Scholar 

  85. CHEN, H.C., LONG, B.G., SONG, H.Y. 1996. Exopolysaccharide deficient mutants of astra gali rhizobia are symbiotically effective on Astragalus sinicus, an indeterminate nodulating host. Plant and Soil 179: 217–221.

    Article  CAS  Google Scholar 

  86. NDOYE, I., DEBILLY, S.F., VASSE, J., DREYFUS, B., TRUCHET, G. 1994. Root nodulation of Sesbania rostrata. J. Bacteriol. 176: 1060–1068.

    PubMed  CAS  Google Scholar 

  87. ROLFE, B.G., CARLSON, R.W., RIDGE, R.W., DAZZO, F.B., MATEOS, P.F., PANKHURST, C.E. 1996. Defective infection and nodulation of clovers by exopolysaccharide mutants of Rhizobium leguminosarum bv. trifolii. Austr. J. Plant Physiol. 23: 285–303.

    Article  CAS  Google Scholar 

  88. SKORUPSKA, A., BIALEK, U., URBANIK-SYPNIEWSKA, T., VAN LAMMEREN, A. 1995. Two types of nodules induced on Trifolium pratense by mutants of Rhizobium leguminosarum bv. trifolii deficient in exopolysaccharide production. J. Plant Physiol. 147: 93–100.

    Article  CAS  Google Scholar 

  89. YANG, C., SIGNER, E.R., HIRSCH, A.M. 1992. Nodules initiated by Rhizobium meliloti exopolysaccharide mutants lack a discrete, persistent nodule meristem. Plant Physiol. 96: 143–151.

    Article  Google Scholar 

  90. FINAN, T.M., HIRSCH, A.M., LEIGH, J.A., JOHANSEN, E., KULDAU, G.A., DEEGAN, S., WALKER, G.C., SIGNER, E.R. 1985. Symbiotic mutants of Rhizobium meliloti that uncouple plant from bacterial differentiation. Cell 40: 869–877.

    Article  PubMed  CAS  Google Scholar 

  91. VAN WORKUM, W.A.T., VAN BRÜSSEL, A.A.N., TAK, T., WIJFFELMAN, C.A., KIJNE, J.W. 1995. Ethylene prevents nodulation of Vicia saliva ssp. nigra by exopolysaccharide-deficient mutants of Rhizobium leguminosarum bv. viciae. Mol. Plant-Microbe Interact. 8:278–285.

    Article  Google Scholar 

  92. DARVILL, A.G., ALBERSHEIM, P. 1984. Phytoalexins and their elicitors — a defense against microbial infection in plants. Ann. Rev. Plant Physiol. 35: 243–275.

    Article  CAS  Google Scholar 

  93. NOEL, K.D. 1992. Rhizobial polysaccharides required in symbioses with legumes. In: Molecular Signals in Plant-Microbe Interactions (D.P. Verma, ed.), CRC Press, Inc, Boca Rato, FL, pp. 341–357.

    Google Scholar 

  94. OZGA, D. A., LARA, J.C., LEIGH, J.A. 1994. The regulation of exopolysaccharide production is important at two levels of nodule development in Rhizobium meliloti. Mol. Plant-Microbe Interact. 7: 758–765.

    Article  PubMed  CAS  Google Scholar 

  95. BORTHAKUR, D., DOWNIE, J.A., JOHNSTON, A.W.B., LAMB, J.W. 1985. Psi, a plasmidlinked Rhizobium phaseoli gene that inhibits exopolysaccharide production and which is required for symbiotic nitrogen fixation. Mol. Gen. Genet. 200: 278–282.

    Article  CAS  Google Scholar 

  96. GONZALEZ, J.E., REUHS, B.L., WALKER, G.C. 1996. Low molecular weight EPS II of Rhizobium meliloti allows nodule invasion in Medicago sativa. Proc. Natl. Acad. Sci. USA 93: 8636–8641.

    Article  PubMed  CAS  Google Scholar 

  97. PUTNOKY, P., GROSSKOPF, E., CAMHA, D.T., KISS, G.B., KONDOROSI, A. 1988. Rhizobium fix genes mediate at least two communication steps in symbiotic nodule development. J. Cell. Biol. 106: 597–607.

    Article  PubMed  CAS  Google Scholar 

  98. WILLIAMS, M.N.V., HOLLINGSWORTH, R.I., KLEIN, S., SIGNER, E.R. 1990. The symbiotic defect of Rhizobium meliloti exopolysaccharide mutants is suppressed by lpsZ+, a gene involved in lipopolysaccharide biosynthesis. J. Bacteriol. 172: 2622–2632.

    PubMed  CAS  Google Scholar 

  99. PUTNOKY, P., PETROVICS, G., KERESZT, A., GROSSKOPF, E., CAM HA, D., BANFALVI, Z., KONDOROSI, A. 1990. Rhizobium meliloti lipopolysaccharide and exopolysaccharide can have the same function in the plant-bacterium interaction. J. Bacteriol. 172: 5450–5458.

    PubMed  CAS  Google Scholar 

  100. WILLIAMS, M.N.V., HOLLINGWORTH, R.I., BRZOSKA, P.M., SIGNER, E.R. 1990. Rhizobium meliloti chromosomal loci required for suppression of exopolysaccharide mutations by lipopolysaccharide. J. Bacteriol. 172: 6596–6598.

    PubMed  CAS  Google Scholar 

  101. REUHS, B.R., CARLSON, R.W., KIM, J.S. 1993. Rhizobium fredii and Rhizobium meliloti produce 3-deoxy-D-manno-2-octulosonic acid-containing polysaccharides that are structurally analogous to group II K antigens (capsular polysaccharides) found in Escherichia coli. J. Bacteriol. 8: 3570–3580.

    Google Scholar 

  102. PETROVICS, G., PUTNOKY, P., REUHS, B., KIM, J., THORP, T.A., NOEL, K.D., CARLSON, R.W., KONDOROSI, A. 1993. The presence of a novel type of surface polysaccharide in Rhizobium meliloti requires a fatty acid synthase-like gene cluster involved in symbiotic nodule development. Mol. Microbiol. 8: 1083–1094.

    Article  PubMed  CAS  Google Scholar 

  103. REUHS, B.L., WILLIAMS, M.N.V., KIM, J.S., CARLSON, R.W., CÔTÉ, F. 1995. Suppression of the fix phenotype of Rhizobium meliloti exoB mutants by lpsZ is correlated to a modified expression of the K polysaccharide. J. Bacteriol. 177: 4289–4296.

    PubMed  CAS  Google Scholar 

  104. JANN, B., JANN, K. 1990. Structure and biosynthesis of the capsular antigens of Escherichia coli. Curr. Top. Microbiol. Immunol. 150: 19–42.

    Article  PubMed  CAS  Google Scholar 

  105. PAZZANI, C., ROSENOW, C., BOULNOIS, G.J., BRONNER, D., JANN, K., ROBERTS, I.S. 1994. Molecular analysis of Region 1 of the Escherichia coli K5 antigen gene cluster: A region encoding proteins involved in cell surface expression of capsular polysaccharide. J. Bacteriol. 175:5978–5983.

    Google Scholar 

  106. REUHS, B.L. 1996. Acidic capsular polysaccharides (K antigens) of Rhizobium. In: Biology of Plant-Microbe Interactions (G. Stacey, B. Mullin, P.M. Gresshoff, eds.), Int. Soc. Mol. Plant-Microbe Interact. St. Paul, pp. 331–336.

    Google Scholar 

  107. DJORDJEVIC, S.P., CHEN, H., BATLEY, M., REDMOND, J.W., ROLFE, B.G. 1987. Nitrogen fixation ability of exopolysaccharide synthesis mutants of Rhizobium sp NGR234 and Rhizobium trifolii is restored by the addition of homologous exopolysaccharides. J. Bacteriol. 169: 53–60.

    PubMed  CAS  Google Scholar 

  108. URZAINQUI, A., WALKER, G.C. 1992. Exogenous suppression of the symbiotic deficiencies of Rhizobium meliloti exo mutants. J. Bacteriol. 174: 3403–3406.

    PubMed  CAS  Google Scholar 

  109. BATTISTI, L., LARA, J.C., LEIGH, J.A. 1992. Specific oligosaecharide form of the Rhizobium meliloti exopolysaccharide promotes nodule invasion in alfalfa. Proc. Natl. Acad. Sci. USA 89: 5625–5629.

    Article  PubMed  CAS  Google Scholar 

  110. NIEHAUS, K., KAPP, D., PÜHLER, A. 1993. Plant defense and delayed infection of alfalfa pseudonodules induced by an exopolysaccharide (EPSI)-deficient Rhizobium meliloti mutant. Planta 190: 415–425.

    Article  CAS  Google Scholar 

  111. NIEHAUS, K., BAIER, R., BECKER, A., PÜHLER, A. 1996. Symbiotic suppression of the Medicago sativa defense system — the key of Rhizobium meliloti to enter the host plant? In: Biology of Plant-Microbe Interactions (G. Stacey, B. Mullin, P.M. Gresshoff, eds.), Int. Soc. for Mol. Plant-Microbe Interact. St. Paul, pp. 349–352.

    Google Scholar 

  112. MITHÖFER, A., BHAGWAT, A.A., FEGER, M., EBEL, J. 1996. Suppression of fungal β-glucan-induced plant defense in soybean (Glycine max L.) by cyclic 1,3-1,6-β-glucans from the symbiont Bradyrhizobium japonicum. Planta 199: 270–275.

    Article  Google Scholar 

  113. VASSE, J., DE BILLY, F., TRUCHET, G. 1993. Abortion of infection during the Rhizobium meliloti-alfalfa symbiotic interaction is accompanied by a hypersensitive reaction. Plant Journal 4: 555–566.

    Article  Google Scholar 

  114. ZAAT, S.A.J., VAN BRÜSSEL, A.A.N., TAK, T., LUGTENBERG, B.J.J., KIJNE, J.W. 1989. The ethylene-inhibitor aminoethoxyvinylglycine restores normal nodulation by Rhizobium leguminosarum biovar. viciae on Vicia sativa subsp. nigra by suppressing the ‘Thick and short roots’phenotype. Planta 177: 141–150.

    Article  CAS  Google Scholar 

  115. PETERS, N.K., CRIST-ESTES, D.K. 1989. Nodule formation is stimulated by the ethylene inhibitor aminoethoxyvinylglycine. Plant Physiol. 91: 690–693.

    Article  PubMed  CAS  Google Scholar 

  116. PENMETSA, R.V., COOK, D.R. 1997. A legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiont. Science 275: 527–530.

    Article  PubMed  CAS  Google Scholar 

  117. PETERS, N.K., LONG, S.R. 1988. Alfalfa root exudates and compounds which promote or inhibit induction of Rhizobium meliloti nodulation genes. Plant Physiol. 88: 396–400.

    Article  PubMed  CAS  Google Scholar 

  118. RECOURT, K., SCHRIPSEMA, J., KIJNE, J.W., VAN BRUSSEL, A.A.N., LUGTENBERG, B.J.J. 1991. Inoculation of Vicia sativa subsp. nigra roots with Rhizobium leguminosarum biovar viciae results in release of nod gene activating flavanones and chalcones. Plant Mol. Biol. 16: 841–852.

    Article  PubMed  CAS  Google Scholar 

  119. RECOURT, K., VAN TUNEN, A.J., MUR, L.A., VAN BRUSSEL, A.A.N., LUGTENBERG, B.J.J., KIJNE, J.W. 1992. Activation of flavonoid biosynthesis in roots of Vicia sativa ssp. nigra plants by inoculation with Rhizobium leguminosarum biovar viciae. Plant Mol. Biol. 19: 411–20.

    Article  PubMed  CAS  Google Scholar 

  120. VAN BRUSSEL, A.A.N., RECOURT, K., PEES, E., SPAINK, H.P., TAK, T., WIJFFELMAN, C.A., KIJNE, J.W., LUGTENBERG, B.J.J. 1990. A biovar-specific signal of Rhizobium leguminosarum bv. viciae induces increased nodulation gene-inducing activity in root exudate of Vicia sativa subsp. nigra. J. Bacteriol. 172: 5394–5401.

    PubMed  Google Scholar 

  121. FIRMIN, J.L., WILSON, K.E., ROSSEN, L., JOHNSTON, A.W.B. 1986. Flavonoid activation of nodulation genes in Rhizobium reversed by other compounds present in plants. Nature (London) 324: 90–92.

    Article  CAS  Google Scholar 

  122. DUNN, M.F., PUEPPKE, S.G., KRISHNAN, H.B. 1992. The nod gene inducer genistein alters the composition and molecular mass distribution of extracellular polysaccharides produced by Rhizobium fredii. FEMS Microbiol. Lett. 97: 107–112.

    CAS  Google Scholar 

  123. REUHS, B.L., KIM, J.S., BADGETT, A., CARLSON, R.W. 1994. Production of cell-associated polysaccharides of Rhizobium fredii USDA205 is modulated by apigenin and host root extract. Mol. Plant-Microbe Interact. 7: 240–247.

    Article  PubMed  CAS  Google Scholar 

  124. JACOBS, M., RUBERY, P.H. 1988. Naturally occurring auxin transport regulators. Science 241:346–349.

    Article  PubMed  CAS  Google Scholar 

  125. HIRSCH, A.M. 1992. Tansley Review No. 40. Developmental biology of legume nodulation. New Phytol. 122:211–237.

    Article  Google Scholar 

  126. YANG, W.-C., CANTER CREMERS, H.C.J., HOGENDIJK, P., KATINAKIS, P., WIJFFELMAN, C.A., FRANSSEN, H., VAN KAMMEN, A., BISSELING, T. 1992. In-situ localization of chalcone synthase mRNA in pea root nodule development. Plant Journal 2: 143–151.

    Article  CAS  Google Scholar 

  127. MATHESIUS, U., SCHLAMAN, H.R.M., MEIJER, D., LUGTENBERG, B.J.J., SPAINK, H.P., WEINMAN, J.J., RODDAM, L.F., SAUTTER, C., ROLFE, B.G., DJORDJEVIC, M.A. 1996. New tools for investigating nodule initiation and ontogeny: Spot inoculation and microtargeting of transgenic white clover roots shows auxin involvement and suggests a role for flavonoids. In: Biology of Plant-Microbe Interactions (G. Stacey, B. Mullin, P.M. Gresshoff, eds.), Int. Soc. Mol. Plant-Microbe Interact. St. Paul, pp. 353–358.

    Google Scholar 

  128. DIXON, R.A., LAMB, C.J. 1990. Molecular communication in interactions between plants and microbial pathogens. Ann Rev Plant Physiol. Plant Mol. Biol. 41: 339–367.

    Article  CAS  Google Scholar 

  129. PARNISKE, M., FISCHER, H.-M., HENNECKE, H., WERNER, D. 1991. Accumulation of the phytoalexin glyceollin I in soybean nodules infected by a Bradyrhizobium japonicum nifA mutant. Z. Naturforsch. 46c: 318–320.

    Google Scholar 

  130. PARNISKE, M., SCHMIDT, P.E., KOSCH, K., MÜLLER, P. 1994. Plant defense responses of host plants with determinate nodules induced by EPS-defective exoB mutants of Bradyrhizobium japonicum. Mol. Plant-Microbe Interact. 7: 631–638.

    Article  CAS  Google Scholar 

  131. WERNER, D., MELLOR, R.B., HAHN, M.G., GRISEBACH, H. 1985. Soybean root response to symbiotic infection: Glyceollin I accumulation in an ineffective type of soybean nodules with an early loss of the peribacteroid membrane. Z. Naturforsch. 40c: 179–181.

    CAS  Google Scholar 

  132. SAVOURÉ, A., SALLAUD, C., EL-TURK, J., ZUANAZZI, J., RATET, P., SCHULTZE, M., KONDOROSI, A., ESNAULT, R., KONDOROSI, E. 1997. Distinct response of Medicago suspension cultures and roots to Nod factors and chitin oligomers in the elicitation of defenserelated responses. Plant Journal 11: 277–287.

    Article  Google Scholar 

  133. McKHANN, H.I., PAIVA, N.L., DIXON, R.A., HIRSCH, A.M. 1997. Chalcone synthase transcripts are detected in alfalfa root hairs following inoculation with wild-type Rhizobium meliloti. Mol. Plant-Microbe Interact. 10: 50–58.

    Article  CAS  Google Scholar 

  134. BECQUART-DE KOZAK, I., REUHS, B.L., BUFFARD, D., BREDA, C., KIM, J.S., ESNAULT, R., KONDOROSI, A. 1997. Role of the K-antigen subgroup of capsular polysaccharides in the early recognition process between Rhizobium meliloti and alfalfa leaves. Mol. Plant-Microbe Interact. 10: 114–123.

    Article  CAS  Google Scholar 

  135. KOES, R.E., SPELT, C.E., MOL, J.N.M., GERATS, A.G.M. 1987. The chalcone synthase multigene family of Petunia hybrida (V30): Sequence homology, chromosomal localization and evolutionary aspects. Plant Mol. Biol. 10: 375–385.

    Article  Google Scholar 

  136. NIESBACH-KLOSGEN, U., BARZEN, E., BERNHARDT, J., ROHDE, W., SCHWARZSOMMER, Z., REIF, H.J., WIENAND, U., SAEDLER, H. 1987. Chalcone synthase genes in plants: A tool to study evolutionary relationships. J. Mol. Evol. 26: 213–225.

    Article  Google Scholar 

  137. RYDER, T.B., HEDRICK, S.A., BELL, J.N., LIANG, X., CLOUSE, S.D., LAMB, C.J. 1987. Organization and differential activation of a gene family encoding the plant defense enzyme chalcone synthase in Phaseolus vulgaris. Mol. Gen. Genet. 210: 219–233.

    Article  PubMed  CAS  Google Scholar 

  138. WINGENDER, R., ROHRIG, H., HORICKE, C., WING, D., SCHELL, J. 1989. Differential regulation of soybean chalcone synthase genes in plant defense, symbiosis and upon environmental stimuli. Mol. Gen. Genet. 218: 315–322.

    Article  PubMed  CAS  Google Scholar 

  139. ESTABROOK, E.M., SENGUPTA-GOPALAN, C. 1991. Differential expression of phenylalanine ammonia-lyase and chalcone synthase during soybean nodule development. Plant Cell 3: 299–308.

    PubMed  CAS  Google Scholar 

  140. DENNY, T.P. 1995. Involvement of bacterial polysaccharides in plant pathogenesis. In: Annual Review of Phytopathology, 33, (R.K. Webster, G.A. Zentmyer, G. Shaner, eds.), Annual Reviews Inc. Palo Alto, pp. 173–197.

    Google Scholar 

  141. EISENSCHENK, L., DIEBOLD, R., PEREZ-LESHER, J., PETERSON, A.C., PETERS, N.K., NOEL, K.D. 1994. Inhibition of Rhizobium etli polysaccharide mutants by Phaseolus vulgaris root compounds. Appl. Environ. Microbiol. 60: 3315–3322.

    PubMed  CAS  Google Scholar 

  142. REED, J.W., WALKER, G.C. 1991. The exoD gene of Rhizobium meliloti encodes a novel function needed for alfalfa nodule invasion. J. Bacteriol. 173: 664–677.

    PubMed  CAS  Google Scholar 

  143. OSTERÅS, M., STANLEY, J., FINAN, T.M. 1995. Identification of Rhizobium-specific intergenic mosaic elements within an essential two-component regulatory system of Rhizobium species. J. Bacteriol. 177: 5485–5494.

    PubMed  Google Scholar 

  144. KIJNE, J. W. 1975. The fine structure of pea root nodules. 1. Vacuolar changes after endocytotic host cell infection by Rhizobium leguminosarum. Phys. Plant Pathol. 5: 75–79.

    Article  Google Scholar 

  145. TURGEON, B.G., BAUER, W.D. 1985. Ultrastructure of infection-thread development during infection of soybean by Rhizobium japonicum. Planta 163: 328–349.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

van Workum, W.A.T., Kijne, J.W. (1998). Biosynthesis of Rhizobial Exopolysaccharides and Their Role in the Root Nodule Symbiosis of Leguminous Plants. In: Romeo, J.T., Downum, K.R., Verpoorte, R. (eds) Phytochemical Signals and Plant-Microbe Interactions. Recent Advances in Phytochemistry, vol 32. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5329-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5329-8_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7431-2

  • Online ISBN: 978-1-4615-5329-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics