Skip to main content

Allelochemicals in Root Exudates of Maize

Effects on Root Lesion Nematode Pratylenchus zeae

  • Chapter
Phytochemical Signals and Plant-Microbe Interactions

Part of the book series: Recent Advances in Phytochemistry ((RAPT,volume 32))

Abstract

Root exudation of biologically active compounds plays an important role in the interaction of higher plants with the soil ecosystem. This includes, for instance, the exudation of chemical signals for the interaction of plants with symbiotic microorganisms as well as the exudation of antimicrobial substances for plant defense against soil-borne pathogens. Attraction, penetration, and feeding behavior of plant parasitic nematodes also involve molecular communication between the nematode and respective host plants. Chemotaxis of plant parasitic nematodes began to receive attention as early as 1925.1 The influence of root exudates on such phenomena as attraction, repellence, inhibiton, and hatching stimulation have been described for a wide range of nematodes. 2–15

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. STEINER, G. 1925. The problem of host selection and host specialization of certain plants infesting nemas and its application in the study of nemic pests. Phytopathology 15: 499–534.

    Google Scholar 

  2. ATKINSON, H.J., FOWLER, M. 1990. Changes in polyphosphoinositide metabolism in Globodera rostochiensis following stimulation to hatch by potato root diffusate. Nematologica 36:417–423.

    Article  Google Scholar 

  3. ATKINSON, H.J., FOWLER, M., ISAAC, R.E. 1987. Partial purification of hatching activity for Globodera rostochiensis from potato root diffusate. Ann. Appl. Biol. 110: 115–125.

    Article  CAS  Google Scholar 

  4. ATKINSON, H.J., TAYLOR, J.D., FOWLER, M. 1987. Changes in the second stage juveniles of Globodera rostochiensis prior to hatching in response to potato root diffusate. Ann. Appl. Biol. 110: 105–114.

    Article  Google Scholar 

  5. PERRY, R.N., GAUR, H.S. 1996. Host plant influences on the hatching of cyst nematodes. Fund. Appl. Nematol. 19: 505–510.

    Google Scholar 

  6. PERRY, R.N., ZUNKE, U., WYSS, U. 1989. Observations on the response of the dorsal and subventral oesophageal glands of Globodera rostochiensis to a hatching stimulus. Revue de Nematologie. 12:91–96.

    Google Scholar 

  7. PERRY, R.N., BEANE, J. 1983. The hatching of Heterodera goettingiana in response to brief exposure to pea root diffusate. Nematologica 29: 34–38.

    Article  Google Scholar 

  8. PERRY, R.N., HODGES, J.A., BEANE, J. 1981. Hatching of Globodera rostochiensis in response to potato root diffusate persisting in soil. Nematologia 27: 349–352.

    Article  Google Scholar 

  9. CLARKE, A.J., HENNESY, J. 1984. Movement of Globodera rostochiensis (Wollenweber) juveniles stimulated by potato-root exudate. Nematologica 30: 206–212.

    Article  Google Scholar 

  10. PROT, J.C. 1980. Migration of plant-parasitic nematodes towards plant roots. Revue de Nematologie 3: 305–318.

    Google Scholar 

  11. MOLTMANN, E. 1990. Kairomones in root exudate of cereals. Their importance in host finding of juveniles of the cereal cyst nematode, Heterodera avenae (Woll.), and their characterization. Z. Pflanzenkrankheiten Pflanzenschutz 97: 458–469.

    CAS  Google Scholar 

  12. PAPADEMETRIOU, M.K., BONE, L.W. 1983. Chemotaxis of larval soybean cyst nematode Heterodera glycines Race 3, to root leachates and ions. J. Chem Ecol. 9: 387–396.

    Article  Google Scholar 

  13. DIEZ, J. A., DUSENBERY, D.B. 1989. Repellency of root-knot nematodes from exudate of host roots. J. Chem. Ecol. 15: 2445–2455.

    Article  Google Scholar 

  14. TANDA, A.S., ATWAL, A.S., BAJAJ, Y.P.S. 1989. In vitro inhibition of root knot nematode, Meloidogyne incognita, by sesame root exudate and its amino acids. Nematologica 35: 115–124.

    Article  CAS  Google Scholar 

  15. CASTRO, C.E., BELSER, N.O., McKINNEY, H.E., THOMASON, I.J. 1989. Quantitative bioassay for chemotaxis with plant parasitic nematodes. Attractant and repellent fractions for Meloidogyne incognita from cucumber roots. J. Chem. Ecol. 15: 1297–1309.

    Article  Google Scholar 

  16. NIEMEYER, H.M. 1988. Hydroxamic acids (4-Hydroxy-l,4-benzoxazin-3-ones), defence chemicals in the gramineae. Phytochemistry 27: 3349–3358.

    Article  CAS  Google Scholar 

  17. PRATT, K., KUMAR, P., CHILTON, W.S. 1995. Cyclic hydroxamic acids in dicotyledonous plants. Biochem. Syst. Ecol. 23: 781–785.

    Article  CAS  Google Scholar 

  18. PENG, A.B., CHILTON, W. S. 1994. Biosynthesis of DIMBOA in maize using deuterium oxid as a tracer. Phytochemistry 37: 167–171.

    Article  CAS  Google Scholar 

  19. BAILEY, B.A., LARSON, R.L. 1991. Maize microsomal benzoxazinone-N-monooxygenase. Plant Physiol. 95: 792–796.

    Article  PubMed  CAS  Google Scholar 

  20. XIE, Y., ARNASON, J.T., PHILOGENE, B.J.R., OLECHOWSKI, H.T., HAMILTON, R.I. 1992. Variation of hydroxamic acid content in maize roots in relation to geographic origin of maize germplasm and resistance to western corn rootworm (Coleoptera: Chrysomelidae). J. Econ. Entomol. 85: 2478–2485.

    CAS  Google Scholar 

  21. XIE, Y., ARNASON, J.T., PHILOGENE, B.J.R., ATKINSON, J., MORAND, P. 1991. Distribution and variation of cyclic hydroxamic acids and related compounds in maize (Zea mays) root system. Can. J. Bot. 69: 677–681.

    Article  CAS  Google Scholar 

  22. KLUN, J.A., TIPTON, C.L., ROBINSON, J.F. 1970. Isolation and identification of 6,7-dimethoxy-2-benzoxazolinone from dried tissues of Zea mays (L.) and evidence of its cyclic hydroxamic acid precursor. J. Agr. Food Chem. 18: 663–665.

    Article  CAS  Google Scholar 

  23. NAGAO, T., OTSUKA, H., KOHDA, H., SATO, T., YAMASAKI, K. 1985. Benzoxazinones from Coix Lachryma-Jobi var.Ma-Yuen. Phytochemistry 24: 2959–2962.

    Article  CAS  Google Scholar 

  24. WOODWARD, M.D., CORCUERA, L.J., SCHNOES, H.K., HELGESON, J.P., UPPER, CD. 1979. Identification of 1,4-benzoxazin-3-ones in maize extracts by gas-liquid chromatography and mass spectrometry. Plant Physiol. 63: 9–13.

    Article  PubMed  CAS  Google Scholar 

  25. HOFMAN, J., HOFMANOVA, O., HANUS, V. 1969. 1,4-Benzoxazinone derivatives in plants. A new glucoside derivative from Zea mays. Tetrahedron Lett. No. 57: 5001–5002.

    Article  Google Scholar 

  26. BÜCKER, C., GRAMBOW, H.J. 1990. Alterations in 1,4-benzoxazinone levels following inoculation with stem rust in wheat leaves carrying various alleles for resistance and their possible role as phytoalexins in moderately resistant leaves. Z. Naturforsch. 45c: 1151–1155.

    Google Scholar 

  27. GRAMBOW, H.J., LÜCKGE, J. 1986. Occurence of 2-(2-hydroxy-4,7-dimethoxy-2H-1,4-benzoxazin-3-one)-β-D-glucopyranoside in Triticum aestivum leaves and its conversion into 6-methoxy-benzoxazolinone. Z. Naturforsch. 41c: 684–690.

    Google Scholar 

  28. KLUGE, M., GRAMBOW, H.J., SICKER, D. 1997. (2R)-2-β-D-Glucopyranosyloxy-4,7-dimethoxy-2H-l,-benzoxazin-3(4H)-one from Triticum aestivum. Phytochemistry 44: 639–641.

    Article  CAS  Google Scholar 

  29. HEDIN, P.A., DAVIS, F.M., WILLIAMS, W.P. 1993. 2-Hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one (N-O-Me-DIMBOA), a possible toxic factor in corn, to the southwestern corn borer. J. Chem. Ecol. 19: 531–542.

    Article  CAS  Google Scholar 

  30. FIELDER, D.A., COLLINS, F.W., BLACKWELL, B.A., BENSIMIN, C., APSIMON, J.W. 1994. Isolation and characterization of 4-acetyl-benzoxazolin-2-one (4-ABOA), a new benzoxazolinone from Zea mays. Tetrahedron Lett. 35: 521–524.

    Article  CAS  Google Scholar 

  31. ANAI, T., AIZAWA, H., OHTAKE, N., KOSEMURA, S., YAMAMURA, S., HASEGAWA, K. 1996. A new auxin-inhibiting substance, 4-Cl-6,7-dimethoxy-2-benzoxazolinone, from light-grown maize shoots. Phytochemistry 42: 273–275.

    Article  CAS  Google Scholar 

  32. BARNES, J.P., PUTNAM, A.R. 1987. Role of benzoxazinones in allelopathy by rye (Secale cereale L.). J. Chem. Ecol. 13: 889–906.

    Article  CAS  Google Scholar 

  33. BERGVINSON, D.J., LARSEN, J.S., ARNASON, J.T. 1995. Effect of light on changes in maize resistance against the European corn borer, Ostrinia nubililalis (Hübner). Can. Entomol. 127: 111–122.

    Article  Google Scholar 

  34. MORSE, S., WRATTEN, S.D., EDWARDS, P.J., NIEMEYER, H.M. 1991. Changes in hydroxamic acid content of maize leaves with time and after artificial damage: implications for insect attack. Ann. Appl. Biol. 119: 239–249.

    Article  CAS  Google Scholar 

  35. SCHULZ, M., FRIEBE, A., KÜCK, P., SEIPEL, M., SCHNABL, H. 1994. Allelopathic effects of living quackgrass (Agropyron repens L.). Identification of inhibitory alleloehemicals exuded from rhizome borne roots. Appl. Bot. 68: 195–200.

    CAS  Google Scholar 

  36. PEREZ, F.J., ORMENO-NUNEZ, J. 1993. Weed growth interference from temperate cereals: The effect of a hydroxamic-acids exuding rye (Secale cereale L.) cultivar. Weed Res. 33:115–119.

    Article  CAS  Google Scholar 

  37. PEREZ, F.J. 1991. Allelopathic effect of hydroxamic acids from cereals on Avena sativa and Avena fatua. Phytochemistry 29: 773–776.

    Article  Google Scholar 

  38. COUTURE, R.M., ROUTLEY, D., DUNN, G.M. 1971. Role of cyclic hydroxamic acids in monogenic resistance of maize to Helminthosporium turcicum. Physiol. P1. Path. 1: 515–521.

    Article  CAS  Google Scholar 

  39. BAKER, E.A., SMITH, I.M. 1977. Antifungal compounds in winter wheat resistant and susceptible to Septoria nodorum. Ann. Appl. Biol. 87: 67–73.

    Article  CAS  Google Scholar 

  40. RICHARDSON, M.D., BACON, C.W. 1995. Catabolism of 6-methoxy-benzoxazolinone and benzoxazolinone by Fusarium moniliforme. Mycologia 87: 510–517.

    Article  CAS  Google Scholar 

  41. DABLER, J.M., PAPPELIS, A.J., BEMILLER, J.N. 1969. Effects of phenolic acids and corn extracts upon spore germination of Diplodia zeae. Phytopathology 69: 1098–1101.

    Google Scholar 

  42. EL NAGHY, M.A., SHAW, M. 1966. Correlation between resistance to stem rust and the concentration of a glucoside in wheat. Nature 23: 17–18.

    Google Scholar 

  43. ZHU, Y.L., HE, R., LIU, J.L. 1994. Changes of DIMBOA contents in resistant and susceptible near-isolines of maize during infection with Exserohicum turcicum. Acta Agron. Sinica 20: 653–657.

    Google Scholar 

  44. THACKRAY, D.J., WRATTEN, S.D., EDWARDS, P.J., NIEMEYER, H.M. 1990. Resistance to the aphids Sitobion avenae and Rhopalosiphum padi in Gramineae in relation to hydroxamic levels. Ann. Appl. Biol. 116: 573–582.

    Article  CAS  Google Scholar 

  45. BOHIDAR, K., WRATTEN, S.D., NIEMEYER, H.M. 1986. Effect of hydroxamic acids on the resistance of wheat to the aphid Sitobion avenae. Ann. Appl. Biol. 109: 193–198.

    Article  CAS  Google Scholar 

  46. GIVOVICH, A., NIEMEYER, H.M. 1995. Comparison of the effect of hydroxamic acids from wheat on five species of cereal aphids. Entomol. Exp. Appl. 74: 115–119.

    Article  CAS  Google Scholar 

  47. MAYORAL, A.M., TJALLINGII, W.F., CASTANERA, P. 1996. Probing behavior of Diuraphis noxia on five cereal species with different hydroxamic levels. Entomol. Exp. Appl. 78:341–348.

    Article  CAS  Google Scholar 

  48. LESZCZYNSKI, B., DIXON, A.F.G. 1992. Resistance of cereals to aphids: The interaction between hydroxamic acids and glutathione S-transferases in the grain aphid Sitobion avenae (F.) (Homoptera: Aphididae). J. Appl. Ent. 113: 61–67.

    Article  Google Scholar 

  49. ROBINSON, J.F., KLUN, J.A., BRINDLEY, T.A. 1978. European corn borer: A non preference mechanism of leaf feeding resistance and its relationship to 1,4-benzoxazin-3-one concentration in dent corn tissue. J. Econ. Entomol. 71: 461–465.

    CAS  Google Scholar 

  50. GUTHRIE, W.D. 1981 Maize whorl stage resistance to the first four instars of European corn borer larvae (Lepidoptera: Pyralidae). J. Kans. Entomol. Soc. 54: 737–740.

    Google Scholar 

  51. HOUSEMAN, J.G., CAMPOS, F., THIE, N.M.R., PHILOGENE, B.J.R., ATKINSON, J., NORAND, P., ARNASON, J.T. 1992. Effect of maize-derived compounds of European corn borer (Lepidoptera: Pyralidae). J. Econ. Ent. 85: 669–674.

    CAS  Google Scholar 

  52. FENGMING, Y., CHONGREN, X., SONGGANG, L., CHANGSHAN, L., JUHUAI, L. 1995. Effects of DIMBOA on several enzymatic systems in Asian corn borer, Ostrinia furnacalis (Guenee). J. Chem. Ecol. 21: 2047–2056.

    Article  Google Scholar 

  53. ABEL, C.A., WILSON, R.C., ROBBINS, J.C. 1995. Evaluation of peruvian maize for resistance to European corn borer Ostrinia nubialis. J. Econ. Ent. 88: 1044–1048.

    Google Scholar 

  54. HIBBARD, B.E., BJOSTARD, L.B. 1990. Isolation of com semiochemicals attractive and repellent to Western corn rootworm larvae. J. Chem. Ecol. 16: 3425–3439.

    Article  CAS  Google Scholar 

  55. BJOSTARD, L.B., HIBBARD, B.E. 1992. 6-Methoxy-2-benzoxazolinone: A semiochemical for host location by Western corn rootworm larvae. J. Chem. Ecol. 18: 931–944.

    Article  Google Scholar 

  56. GAGLIARDO, R.W., CHILTON, W.S. 1992. Soil transformation of 2(3H)-benzoxazolone of rye into phytotoxic 2-amino-3H-phenoxazin-3-one. J. Chem. Ecol. 18: 1683–1691.

    Article  CAS  Google Scholar 

  57. KUMAR, P., GAGLIARDO, R.W., CHILTON, W.S. 1993. Soil transformation of wheat and corn metabolites MBOA and DIM2BOA into aminophenoxazinones. J. Chem. Ecol. 19: 2453–2461.

    Article  CAS  Google Scholar 

  58. FRIEBE, A., WIELAND, I., SCHULZ, M. 1996. Tolerance of Avena sativa to the allelochemical benzoxazolinone. Degradation of BOA by root-colonizing bacteria. Appl. Bot. 70:150–154.

    CAS  Google Scholar 

  59. QUEIROLO, C.B., ANDREO, C.S., NIEMEYER, H.M., CQRCUERA, L.J. 1983. Inhibition of ATPase from chloroplasts by a hydroxamic acid from the Gramineae. Phytochemistry 22: 2455–2458.

    Article  Google Scholar 

  60. MASSARDO, F., ZUNIGA, G.E., PEREZ, L.M., CORCUERA, L.J. 1994. Effects of hydroxamic acids on electron transport and their cellular location in corn. Phytochemistry 35: 873–876.

    Article  CAS  Google Scholar 

  61. QUEIROLO, C.B., ANDREO, C.S., VALLEJOS, R.H., NIEMEYER, H.M., CORCUERA, L.J. 1981. Effects of hydroxamic acids isolated from Gramineae on adenosine 5’-triphosphate synthesis in chloroplasts. Plant Physiol. 68: 941–943.

    Article  PubMed  CAS  Google Scholar 

  62. NIEMEYER, H.M., CALCATERRA, N.B., ROVERI, O.A. 1986. Inhibition of mitochondrial energy-linked reactions by 2,4-dihydroxy-7-methoxy-l,4-benzoxazin-3-one (DIMBOA), a hydroxamic acid from Gramineae. Biochem. Pharmacol. 35: 3909–3914.

    Article  PubMed  CAS  Google Scholar 

  63. NIEMEYER, H.M., CALCATERRA, N.B., ROVERI, O.A. 1987. Inhibition of energy metabolism by benzoxazolin-2-one. Comp. Biochem. Physiol. B 87: 35–39.

    Article  PubMed  CAS  Google Scholar 

  64. FRIEBE, A., ROTH, U., KÜCK, P., SCHNABL, H., SCHULZ, M. 1997. Effects of 2,4-dihydroxy-1, 4-benzoxazin-3-ones on the activity of plasma membrane H+-ATPase. Phytochemistry 44: 979–983.

    Article  CAS  Google Scholar 

  65. CUEVAS, L., NIEMEYER, H.M., PEREZ, F.J. 1990. Reaction of DIMBOA, a resistance factor from cereals, with a-chymotrypsin. Phytochemistry 29: 1429–1432.

    Article  CAS  Google Scholar 

  66. PEREZ, F.J., NIEMEYER, H.M. 1989. Reaction of DIMBOA, a resistance factor from cereals, with papain. Phytochemistry 28: 1597–1600.

    Article  CAS  Google Scholar 

  67. HASHIMOTO, Y., SHUDO, K. 1996. Chemistry of biologically active benzoxazinoids. Phytochemistry 43: 551–559.

    Article  PubMed  CAS  Google Scholar 

  68. NIEMEYER, H.M., CORCUERA, L.J., PEREZ, F.J. 1982. Reaction of a cyclic hydroxamic acid from Gramineae with thiols. Phytochemistry 21: 2287–2289.

    Article  CAS  Google Scholar 

  69. PEREZ, F.J., NIEMEYER, H.M. 1989. Reaction of DIMBOA with amines. Phytochemistry 28: 1831–1834.

    Article  CAS  Google Scholar 

  70. ISHIZAKI, T., HASHIMOTO, Y., SHUDO, K., OKAMOTO, T. 1982. Reaction of 4-acetoxy-1,4-benzoxazin-3-one with DNA. A possible chemical mechanism for the antifungal and mutagenic activities. Tetrahedron Lett. 23: 4055–4056.

    Article  CAS  Google Scholar 

  71. HASEGAWA, K., TOGO, S., URASHIMA, M., MIZUTANI, J., KOSEMURA, S., YAMAMURA, S. 1992. An auxin-inhibiting substance from light-grown maizeshoots. Phytochemistry 31:3673–3676.

    Article  CAS  Google Scholar 

  72. VENIS, M. A., WATSON, P.J. 1978. Naturally occurring modifiers of auxin-receptor interaction in corn: Identification as benzoxazolinones. Planta 142: 103–107.

    Article  CAS  Google Scholar 

  73. HOSHI-SAKODA, M., USUI, K., ISHIZUKA, K., KOSEMURA, S., YAMAMURA, S., HASEGAWA, K. 1994. Structure-activity relationships of benzoxazolinones with respect to auxin-induced growth and auxin-binding protein. Phytochemistry 37: 297–300.

    Article  Google Scholar 

  74. DE WAELE, D., JORDAAN, E.M. 1988. Plant-parasitic nematodes on field crops in South africa. 1. Maize. Revue Nematol. 11: 65–74.

    Google Scholar 

  75. TANG, C.S., YOUNG, C.C. 1982. Collection and identification of allelopathic compounds from the undisturbed root system of bigalta limpograss (Himarthria altissima). Plant Physiol. 69: 155–160.

    Article  PubMed  CAS  Google Scholar 

  76. WOODWARD, D., CORCUERA, L.J., HELGESON, J.P., KELMAN, A., UPPER, CD. 1978. Decomposition of 2,4-dihydroxy-7-methoxy-2H-l,4-benzoxazin-3(4H)-one in aqueous solution. Plant Physiol. 61: 796–802.

    Article  PubMed  CAS  Google Scholar 

  77. HARTENSTEIN, H., KLEIN, J., SICKER, D. 1993. Efficient procedure for (2R)-ß-D-glucopyranosyloxy-4-hydroxy-7methoxy-2H-1, 4-benzoxazin-3(4H)-one from maize. Ind. J. Heterocycl. Chem. 2: 151–153.

    CAS  Google Scholar 

  78. ATKINSON, J., MORAND, P., ARNASON, J.T., NIEMEYER, H.M., BRAVO, V. 1991. Analogues of the cyclic hydroxamic acid 2,4-dihydroxy-7-methoxy-2H-l,4-benzoxazin-3-one: Decomposition to benzoxazolinones and reaction with mercaptoethanol. J. Org. Chem. 56: 1788–1800.

    Article  CAS  Google Scholar 

  79. PEREZ, F.J., ORMENO-NUNEZ, J. 1991. Differences in hydroxamic acids content in roots and root exudates of wheat (Triticum aestivum L.) and rye (Secale cereale L.): Possible role in allelopathy. J. Chem. Ecol. 17: 1037–1043.

    Article  CAS  Google Scholar 

  80. PETHO, M. 1993. Occurrence of cyclic hydroxamic acids in the tissues of barnyard grass (Echinochloa crus-galli/L./P. B.), and their role in allelopathy. Acta Agron. Hungarica 42: 197–202.

    CAS  Google Scholar 

  81. FRIEBE, A., SCHULZ, M., KÜCK, P., SCHNABL, H. 1995: Phytotoxins from shoot extracts and root exudates of Agropyron repens seedlings. Phytochemistry 38: 1157–1159.

    Article  CAS  Google Scholar 

  82. PETHO, M. 1992. Occurrence and physiological role of benzoxazinones and their derivatives. III. Possible role of 7-methoxy-benzoxazinone in iron uptake of maize. Acta Agron. Hungarica 41:57–64.

    CAS  Google Scholar 

  83. PETHO, M. 1993. Possible role of cyclic hydroxamic acids in the iron uptake by grasses. Acta Agron. Hungarica 42: 203–214.

    CAS  Google Scholar 

  84. SACHS, L. 1968. Statistische Auswertungsmethoden. Springer-Verlag Berlin, pp. 326–329.

    Google Scholar 

  85. SIDAK, Z. 1967. Rectangular confidence regions for the means of multivariate normal distributions. J. Am. Stat. Association 62: 626–633.

    Google Scholar 

  86. SOKAL, R.R., ROHLF, F.J. 1995. Biometry. The Principles and Practice of Statistics in Biological Research. 3rd Ed., W.H. Freeman & Comp., New York, pp. 239–240.

    Google Scholar 

  87. LUNG, G. 1993. The role of phytosiderophores as an attractive substances of root exudates from several cereals for second stage juveniles of Heterodera avenae. Med. Fac. Landbouww. Univ. Gent. 58: 729–735.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Friebe, A., Klever, W., Sikora, R., Schnabl, H. (1998). Allelochemicals in Root Exudates of Maize. In: Romeo, J.T., Downum, K.R., Verpoorte, R. (eds) Phytochemical Signals and Plant-Microbe Interactions. Recent Advances in Phytochemistry, vol 32. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5329-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5329-8_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7431-2

  • Online ISBN: 978-1-4615-5329-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics