Skip to main content

Active Oxygen in Fungal Pathogenesis of Plants

The Role of Cercosporin in Cercospora Diseases

  • Chapter
Phytochemical Signals and Plant-Microbe Interactions

Part of the book series: Recent Advances in Phytochemistry ((RAPT,volume 32))

Abstract

The term “active oxygen species” generally refers to both radical and non-radical derivatives of oxygen which are highly reactive in biological systems. Ground state molecular oxygen is relatively unreactive in cells due to its “triplet” conformation (the presence of two unpaired electrons of parallel spin). Since most organic molecules in biological systems have paired electrons with opposite spins (“singlet” conformation), reactions of ground state oxygen with other compounds are generally spin-restricted, and often occur one electron at a time. Thus, metabolic reactions involving oxygen often result in the production of radical or reduced intermediates,1 including Superoxide (O ·−2 ), hydrogen peroxide (H2O2), and the hydroxyl radical (OH·). Another activated oxygen species, singlet oxygen (1O2), is not a free radical, but the lack of any spin restriction makes it highly reactive with biological molecules. Although toxic to cells, all of these forms of oxygen occur in biological systems and have increasingly been shown to play important roles in normal cellular processes, including normal metabolic and biosynthetic reactions, signaling, and cell defense.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. GREEN, M.J., HILL, A.O. 1984. Chemistry of dioxygen. Methods in Enzymology 105:3–22.

    Article  PubMed  CAS  Google Scholar 

  2. BAKER, C.J., ORLANDI, E.W. 1995. Active oxygen in plant pathogenesis. Annu. Rev. Phytopathol. 33:299–321.

    Article  PubMed  CAS  Google Scholar 

  3. DOKE, N., MIURA, Y., SANCHEZ, L.M., KAWAKITA, K. 1994. Involvement of Superoxide in signal transduction: Responses to attack by pathogens, physical and chemical shocks, and UV irradiation. In: Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants, (C.H. Foyer, P.M. Mullineaux, eds.), CRC Press, Inc, Boca Raton, FL, pp. 177–197.

    Google Scholar 

  4. MEHDY, M.C., SHARMA, Y.K., KANAGASABAPATHI, S., BAYS, N.W. 1996. The role of activated oxygen species in plant disease resistance. Physiol. Plant. 98:365–374.

    Article  CAS  Google Scholar 

  5. SUTHERLAND, M.W. 1991. The generation of oxygen radicals during host plant responses to infection. Physiol. Molec. Plant Pathol. 39:79–93.

    Article  CAS  Google Scholar 

  6. SCHRECK, R., BAERUERLE, P. 1991. A role for oxygen radicals as second messengers. Trends Cell Biol. 1:39–42.

    Article  PubMed  CAS  Google Scholar 

  7. DAVIS, V.M., STACK, M.E. 1991. Mutagenicity of stemphyltoxin III, a metabolite of Alternaria altemata. Appl. Environ. Microbiol. 57:180–182.

    PubMed  CAS  Google Scholar 

  8. STACK, M.E., MAZZOLA, E.P., PAGE, S.W., POHLAND, A.E., HIGHET, R.S., TEMPESTA, M.S., CORELY., D.G. 1986. Mutagenic perylenequinone metabolites of Altemaria altemata: Altertoxins I, II, and III. J. Nat. Products 49:866–871.

    Article  CAS  Google Scholar 

  9. DAUB, M.E. 1982. Cercosporin, a photosensitizing toxin from Cercospora species. Phytopathology 72:370–374.

    Article  CAS  Google Scholar 

  10. ROBESON, D., STROBEL, G., MATUSUMOTO, G.K., FISHER, E.L., CHEN, M.H., CLARDY., J. 1984. Alteichin: An unusual phytotoxin from Altemaria eichorniae, a fungal pathogen of water hyacinth. Experientia, 40, 1248–1250.

    Article  PubMed  CAS  Google Scholar 

  11. HARTMAN, P.E., SUZUKI, C.K., STACK, M.E. 1989. Photodynamic production of superoxide in vitro by altertoxins in the presence of reducing agents. Appl. Environ. Microbiol. 55:7–14.

    PubMed  CAS  Google Scholar 

  12. STIERLE, A.C., CARDELLINA II, J.H. 1989. Phytotoxins from Alternaria altemata, a pathogen of spotted knapweed. J. Nat. Products 52:42–47.

    Article  CAS  Google Scholar 

  13. ARNONE, A., ASSANTE, G., DI MODUGNO, V., MERLINI, L., NASINI, G. 1988. Perylenequinones from cucumber seedlings infected with Cladosporium cucumerinum. Phytochemistry 6:1675–1678.

    Article  Google Scholar 

  14. YOSHIHARA, T., SHIMANUKI, T., ARAKI, T., SAKAMURA, S. 1975. Phleichrome, A new phytotoxic compound produced by Cladosporium phlei. Agric. Biol. Chem. 39:1683–1684.

    Article  CAS  Google Scholar 

  15. ROBESON, D.J., JALAL, M.A.F. 1992. Formation of entisophleichrome by Cladosporium herbarum isolated from sugar beet. Biosci. Biotech. Biochem. 56:949–952.

    Article  CAS  Google Scholar 

  16. OVEREEM, J.C., SIJPESTEIJN, A.K. 1967. The formation of perylenequinones in etiolated cucumber seedlings infected with Cladosporium cucumerinum. Phytochemistry 6:99–105.

    Article  CAS  Google Scholar 

  17. WEISS, U., MERLINI, L., NASINI, G. 1987. Naturally occurring perylenequinones. In: Progress in the Chemistry of Organic Natural Products, (W. Herz, H. Grisebach, G.W. Kirby, C.H. Tamm, eds.), Springer-Verlag, Vienna, Vol. 52, pp. 1–71.

    Google Scholar 

  18. WU, H., LAO, X.F., WANG, Q.W., LU, R.R. 1989. The shiraiachromes: Novel fungal perylenequinone pigments from Shiraia bambusicola. J. Nat. Prod. 5:948–5951.

    Article  Google Scholar 

  19. DIWU, Z. 1995. Novel theraputic and diagnostic applications of hypocrellins and hypericins. Photochem. Photobiol. 61:529–539.

    Article  PubMed  CAS  Google Scholar 

  20. DIWU, Z., LOWN, J.W. 1990. Hypocrellins and their use in photosensitization. Photochem. Photobiol. 52:609–616.

    Article  CAS  Google Scholar 

  21. GIROTTI, A.W. 1990. Photodynamic lipid peroxidation in biological systems. Photochem. Photobiol. 51:497–509.

    Article  PubMed  CAS  Google Scholar 

  22. FOOTE, C. S. 1976. Photosensitized oxidation and singlet oxygen: Consequences in biological systems. In: Free Radicals in Biology, (W.A. Pryor, ed.), Academic Press, New York, Vol. II, pp. 85–133.

    Google Scholar 

  23. SPIKES, J.D. 1989. Photosensitization. In: The Science of Photobiology, 2nd Ed., (K.C. Smith, ed.), Plenum Press, New York, pp. 79–110.

    Chapter  Google Scholar 

  24. ITO, T. 1981. Dye binding and photodynamic action. Photochem. Photobiol. 33: 947–955.

    Article  Google Scholar 

  25. HEITZ, J.R., DOWNUM, K.R. 1995. Light-Activated Pest Control. American Chemical Society, Washington DC. 279 p.

    Book  Google Scholar 

  26. GEISE, A.C. 1980. Hypericism. Photochem. Photobiol. Rev. 5:229–255.

    Article  Google Scholar 

  27. GIESE, A.C. 1981. The photobiology of Blepharisma. Photochem. Photobiol. Rev. 6:139–80.

    Article  CAS  Google Scholar 

  28. SONG, P.S., POFF, K.L. 1989. Photomovement. In: The Science of Photobiology, (K.C. Smith, ed.), Plenum Press, New York, pp. 305–346.

    Chapter  Google Scholar 

  29. HUDSON, J.B., TOWERS, G.H.N. 1991. Therapeutic potential of plant photosensitizers. Pharmac. Ther. 49:181–222.

    Article  CAS  Google Scholar 

  30. HUDSON, J.B., ZHOU, J., CHEN, J., HARRIS, L., YIP, L., TOWERS, G.H.N. 1994. Hypocrellin, from Hypocrella bambusae, is phototoxic to human immunodeficiency virus. Photochem. Photobiol. 60:253–255.

    Article  PubMed  CAS  Google Scholar 

  31. DEUTSCHMANN, F. 1953. Uber die “purple stain” krankheit der Sojabohne und die farbstoffbildung ihres erregers (Cercospora kiluchii Mats et Tom). Phytopathol. Z. 20:297–310.

    Google Scholar 

  32. KUYAMA, S., TAMURA, T. 1957. Cercosporin. A pigment of Cercospora kikuchii Matsumoto et Tomoyasu. I. Cultivation of fungus, isolation and purification of pigment. J. Am. Chem. Soc. 79:5725–26.

    Article  CAS  Google Scholar 

  33. KUYAMA, S., TAMURA, T. 1957. Cercosporin. A pigment of Cercospora kikuchii Matsumoto et Tomoyasu. II. Physical and chemical properties of cercosporin and its derivatives. J. Am. Chem. Soc. 79:5726–29.

    Article  CAS  Google Scholar 

  34. DAUB, M.E. 1987. The fungal photosensitizer cerosporin and its role in plant disease. In: Light-Activated Pesticides, (J.R. Heitz, K.R. Downum, eds.), American Chemical Society, Washington, DC., pp. 271–80.

    Chapter  Google Scholar 

  35. LOUSBERG, R.J.J.CH., WEISS, U., SALMINK, CA., ARNONE, A., MERLINI, L., NASINI, G. 1971. The structures of cercosporin, a naturally occurring quinone. Chem. Commun. 71:1463–64.

    Google Scholar 

  36. YAMAZAKI, S., OGAWA, T. 1972. The chemistry and stereochemistry of cercosporin. Agric. Biol. Chem. 36:1707–18.

    Article  CAS  Google Scholar 

  37. NASINI, G.L., MERLINI, L., ANDRETTI, G.D., BOCELLI, G., SGARABOTTO, P. 1982. Stereochemistry of cercosporin. Tetrahedron 38:2787–2796.

    Article  CAS  Google Scholar 

  38. WOLFBEIS, O.S., FÜRLINGER, E. 1983. Absorption, fluroescence and fluorimetric detection limits of naturally occurring quinoid antibiotics and dyes. Mikrochim. Acta 3:385–98.

    Article  CAS  Google Scholar 

  39. OKUBO, A., YAMAZAKI, S., FUWA, K. 1975. Biosynthesis of cercosporin. Agric. Biol. Chem. 39:1173–1175.

    Article  CAS  Google Scholar 

  40. BALIS, C., PAYNE, M.G. 1971. Triglycerides and cercosporin from Cercospora beticola: Fungal growth and cercosporin production. Phytopathology 61:1477–1484.

    Article  CAS  Google Scholar 

  41. EHRENSHAFT, M., UPCHURCH, R.G. 1991. Isolation of light-enhanced cDNA clones of Cercospora kikuchii. Appl. Environ. Microbiol. 57:2671–2676.

    PubMed  CAS  Google Scholar 

  42. FAJOLA, A.O. 1978. Cercosporin, a phytotoxin from Cercospora species. Physiol. Plant Pathol. 13:157–164.

    Article  CAS  Google Scholar 

  43. JENNS, A.E., DAUB, M.E., UPCHURCH, R.G. 1989. Regulation of cercosporin accumulation in culture by medium and temperature manipulation. Phytopathology 79:213–219.

    Article  CAS  Google Scholar 

  44. CALLAHAN, T.M., EHRENSHAFT, M., UPCHURCH, R.G. 1993. Sequence and functional analysis of light enhanced clone cLE6 of Cercospora kikuchii. Phytopathology 83:1422 (Abstract).

    Google Scholar 

  45. UPCHURCH, R.G., WALKER, D.C., ROLLINS, J.A., EHRENSHAFT, M., DAUB, M.E. 1991. Mutants of Cercospora kikuchii altered in cercosporin synthesis and pathogenicity. Appl. Environ. Microbiol. 57:2940–2945.

    PubMed  CAS  Google Scholar 

  46. EHRENSHAFT, M., UPCHURCH, R.G. 1993. Host protein(s) induces accumulation of the toxin cercosporin and mRNA in a phytopathogenic strain of Cercospora kikuchii. Physiol. Mol. Plant Path. 43:95–107.

    Article  CAS  Google Scholar 

  47. YAMAZAKI, S., OKUBE, A., AKIYAMA, Y., FUWA, K. 1975. Cercosporin, a novel photodynamic pigment isolated from Cercospora kikuchii. Agric. Biol. Chem. 39:287–288.

    Article  CAS  Google Scholar 

  48. DAUB, M.E., HANGARTER, R.P. 1983. Production of singlet oxygen and Superoxide by the fungal toxin, cercosporin. Plant Physiol. 73:855–857.

    Article  PubMed  CAS  Google Scholar 

  49. HARTMAN, P.E., DIXON, W.J., DAHL, T.A., DAUB, M.E. 1988. Multiple modes of photodynamic action by cercosporin. Photochem. Photobiol. 47:699–703.

    Article  PubMed  CAS  Google Scholar 

  50. DOBROWOLSKI, D.C., FOOTE, C.S. 1983. Chemistry of singlet oxygen. 46. Quantum yield of cercosporin-sensitized singlet oxygen formation. Angewante Chemie 95:729–30.

    Article  CAS  Google Scholar 

  51. LEISMAN, G.B., DAUB, M.E. 1992. Singlet oxygen yields, optical properties, and phototoxicity of reduced derivatives of the photosensitizer cercosporin. Photochem. Photobiol. 55:373–379.

    Article  CAS  Google Scholar 

  52. HUGHES, K., NEGROTTO, D., DAUB, M., MEEUSEN, R. 1984. Free radical stress response in paraquat-sensitive and resistant tobacco plants. Environ. Exp. Bot. 24:151–157.

    Article  CAS  Google Scholar 

  53. HUGHES, K.W., HOLTON, R.W. 1981. Levels of Superoxide dismutase, peroxidase, and catalase in a tobacco cell line selected for herbicide resistance. In Vitro 17:211 (Abstract).

    Google Scholar 

  54. FURUSAWA, L., TANAKA, K., THANUTONG, P., MIZUGUCHI, A., YAZAKI, M., ASADA, K. 1984. Paraquat resistant tobacco calluses with enhanced Superoxide dismutase activity. Plant Cell Physiol. 25:1247–1254.

    CAS  Google Scholar 

  55. DAUB, M.E., BRIGGS, S.P. 1983. Changes in tobacco cell membrane composition and structure caused by the fungal toxin, cercosporin. Plant Physiol. 71:763–766.

    Article  PubMed  CAS  Google Scholar 

  56. DAUB, M.E. 1982. Peroxidation of tobacco membrane lipids by the photosensitizing toxin, cercosporin. Plant Physiol. 69:1361–1364.

    Article  PubMed  CAS  Google Scholar 

  57. MACRI, F., VIANELLO, A. 1979. Photodynamic activity of cerosporin on plant tissues. Plant Cell Environ. 2:267–271.

    Article  Google Scholar 

  58. CAVALLINI, A., BINDOLI, A., MACRI, F., VIANELLO, A. 1979. Lipid peroxidation induced by cercosporin as a possible determinant of its toxicity. Chem. Biol. Interact. 28:139–146.

    Article  PubMed  CAS  Google Scholar 

  59. FUKUZAWA, K., CHIDA, H., TOKUMURA, A., TSUKATANI, H. 1981. Antioxidant effect of a-tocopherol incorporation into lecithin liposomes on ascorbic acid-Fe+2-induced lipid peroxidation. Arch. Biochem. Biophys. 206:173–180.

    Article  PubMed  CAS  Google Scholar 

  60. PAULS, K.P., THOMPSON, J.E. 1981. Effects of in vitro treatment with ozone on the physical and chemical properties of membranes. Physiol. Plant 53:255–262.

    Article  CAS  Google Scholar 

  61. STEINKAMP, M.P., MARTIN, S.S., HOEFERT, L.L., RUPPEL, E.G. 1979. Ultrastructure of lesions produced by Cercospora beticola in leaves of Beta vulgaris. Physiol. Plant Pathol. 15:13–16.

    Article  Google Scholar 

  62. STEINKAMP, M.P., MARTIN, S.S., HOEFERT, L.L., RUPPEL, F.G. 1981. Ultrastructure of lesions produced in leaves of Beta vulgaris by cercosporin, a toxin from Cercospora beticola. Phytopathology 71:1272–1281.

    CAS  Google Scholar 

  63. ECHANDI, E. 1959. La chasparria de los cafetos causada por el hongo Cercospora coffeicola Berk and Cooke. Turrialba 9:54–67.

    Google Scholar 

  64. CALPOUZOS, L., STALKNECHT, G.F. 1967. Symptoms of Cercospora leaf spot of sugar beets influenced by light intensity. Phytopathology 57:799–800.

    Google Scholar 

  65. CALPOUZOS, L. 1966. Action of oil in the control of plant disease. Annu. Rev. Phytopathol. 4:369–390.

    Article  CAS  Google Scholar 

  66. THOROLD, C.A. 1940. Cultivation of bananas under shade for the control of leaf spot disease. Trop. Agric. Trin. 17:213–214.

    Google Scholar 

  67. ROTEM, J., WENDT, U., DRANZ, J. 1988. The effect of sunlight on symptom expression of Alternaria alternata on cotton. Plant Pathology 37:12–15.

    Article  Google Scholar 

  68. TOWERS, G.H.N. 1984. Interactions of light with phytochemicals in some natural and novel systems. Can. J. Bot. 62:2900–2911.

    Article  CAS  Google Scholar 

  69. BERENBAUM, M.R. 1987. Charge of the light-activated brigade: Photoxicity as a defense against insects. In: Light-Activated Pesticides, (J.R. Heitz, K.R. Downum, eds.), American Chemical Society, Washington, DC., pp. 206–216.

    Chapter  Google Scholar 

  70. BELLUS, D. 1979. Physical quenchers of singlet molecular oxygen. Adv. Photochem. 11:105–205.

    Article  CAS  Google Scholar 

  71. FOOTE, C.S., DENNY, R.W., WEAVER, L., CHANG, Y., PETERS, J. 1970. Quenching of singlet oxygen. Ann. N.Y Acad. Sci. 171:139–148.

    Article  CAS  Google Scholar 

  72. KRINSKY, N.I. 1979. Carotenoid protection against oxidation. Pure Appl. Chem. 51:649–660.

    Article  CAS  Google Scholar 

  73. TRUSCOTT, T.G. 1990. New trends in photobiology: The photophysics and photochemistry of the carotenoids. J. Photochem. Photobiol. B. 6:359–371.

    Article  CAS  Google Scholar 

  74. YOUNG, A.J. 1991. The photoprotective role of carotenoids in higher plants. Physiol. Plant. 83:702–708.

    Article  CAS  Google Scholar 

  75. HARTMAN, P.E. 1990. Ergothioneine as an antioxidant. Meth. Enzymol. 186:310–318.

    Article  PubMed  CAS  Google Scholar 

  76. LINDIG, B.A., ROGERS, M.A.J. 1981. Rate parameters for the quenching of singlet oxygen by water-soluble and lipid-soluble substrates in aqueous and micellar systems. Photochem. Photobiol. 33:627–634.

    Article  CAS  Google Scholar 

  77. ROUGEE, M., BENSASSON, R.V., LAND, E.J., PARIENTE, R. 1988. Deactivation of singlet molecular oxygen by thiols and related compounds, possible protectors against skin photosensitivity. Photochem. Photobiol. 47:485–489.

    Article  PubMed  CAS  Google Scholar 

  78. BORS, W., SARAN, M., TAIT, D. 1984. Oxygen Radicals in Chemistry and Biology. Walter de Gruyter, Berlin.

    Book  Google Scholar 

  79. HARPER, D.B., HARVEY, B.M.R. 1978. Mechanism of paraquat tolerance in perennial ryegrass. Plant Cell Environ. 1:211–215.

    Article  Google Scholar 

  80. LEE, E.H., BENNETT, J.W. 1982. Superoxide dismutase. A possible enzyme against ozone injury in snapbeans (Phaseolus vulgaris L.). Plant Physiol. 69:1444–1449.

    Article  PubMed  CAS  Google Scholar 

  81. BATCHVAROVA, R.B., REDDY, V.S., BENNETT, J. 1992. Cellular resistance in rice to cercosporin, a toxin of Cercospora. Phytopathology 82:642–646.

    Article  CAS  Google Scholar 

  82. DAUB, M.E. 1987. Resistance of fungi to the photosensitizing toxin cercosporin. Phytopathology 77:1515–1520.

    Article  CAS  Google Scholar 

  83. TAMAOKI, T., NAKANO, H. 1990. Potent and specific inhibitors of protein kinase C of microbial origin. Bio/Technology 8:732–735.

    Article  PubMed  CAS  Google Scholar 

  84. ROLLINS, J.A., EHRENSHAFT, M., UPCHURCH, R.G. 1993. Effects of light and alteredcercospori phenotypes on gene expression in Cercospora kikuchii. Can. J. Microbiol. 39:118–124.

    Article  CAS  Google Scholar 

  85. DAUB, M.E., LEISMAN, G.B., CLARK, R.A., BOWDEN, E.F. 1992. Reductive detoxification as a mechanism of fungal resistance to singlet-oxygen-generating photosensitizers. Proc. Natl. Acad. Sci. USA 89:9588–9592.

    Article  PubMed  CAS  Google Scholar 

  86. JENNS, A.E., DAUB, M.E. 1995. Characterization of mutants of Cercospora nicotianae sensitive to the toxin cercosporin. Phytopathology 85:906–912.

    Article  CAS  Google Scholar 

  87. JENNS, A.E., SCOTT, D.L., BOWDEN, E.F., DAUB, M.E. 1995. Isolation of mutants of the fungus Cercospora nicotianae altered in their response to singlet-oxygen-generating photosensitizers. Photochem. Photobiol. 61:488–493.

    Article  CAS  Google Scholar 

  88. SOLLOD, C.C., JENNS, A.E., DAUB, M.E. 1992. Cell surface redox potential as a mechanism of defense against photosensitizers in fungi. Appl. Environ. Microbiol. 58:444–449.

    PubMed  CAS  Google Scholar 

  89. DAUB, M.E., PAYNE, G.A. 1989. The role of carotenoids in resistance of fungi to cercosporin. Phytopathology 79:180–185.

    Article  CAS  Google Scholar 

  90. EHRENSHAFT, M., DAUB, M.E. 1994. Isolation, sequence and characterization of the Cercospora nicotianae phytoene dehydrogenase gene. Appl. Environ. Microbiol. 60:2766–2771.

    PubMed  CAS  Google Scholar 

  91. EHRENSHAFT, M., JENNS, A.E., DAUB, M.E. 1995. Targeted gene disruption of carotenoid biosynthesis in Cercospora nicotianae reveals no role for carotenoids in photosensitizer resistance. Molec. Plant Microbe Interact. 8:569–575.

    Article  CAS  Google Scholar 

  92. RUDDAT, M., GARBER, E.D. 1983. Biochemistry, physiology and genetics of carotenogenesis in fungi In: Secondary Metabolism and Differentiation in Fungi, (J.W. Bennett, A. Ciegler, eds.), Marcel Dekker, New York, pp. 95–151.

    Google Scholar 

  93. GWINN, K.D., DAUB, M.E. 1988. Regenerating protoplasts from Cercospora and Neurospora differ in their response to cercosporin. Phytopathology 78: 414–418.

    Article  CAS  Google Scholar 

  94. GWINN, K.D., DAUB, M.E., HUANG, P. 1989. Cytological comparison of early stages of wall regeneration of Cercospora nicotianae and Neurospora crassa protoplasts. Can. J. Bot. 67: 1938–1943.

    Article  Google Scholar 

  95. CLARK, R.A., STEPHENS, T.R., BOWDEN, E.F., DAUB, M.E. 1995. Electrochemical reduction of the phytotoxin cercosporin. J. Electroanal. Chem. 389:205–208.

    Article  Google Scholar 

  96. EHRENSHAFT, M., JENNS, A.E., CHUNG, K.R., DAUB, M.E. 1998. SOR1, a gene required for photosensitizer and singlet oxygen resistance in the fungus Cercospora nicotianae is highly conserved in divergent organisms. Molecular Cell (In press).

    Google Scholar 

  97. STRAUBINGER, B., STRAUBINGER, E., WIRSEL, S., TURGEON, G., YODER, O.C. 1992. Versatile fungal transformation vectors carrying the selectable bar gene of Streptomyces hygroscopicus. Fungal Genetics Newsletter 39:82–83.

    Google Scholar 

  98. BRAUN, EX., FUGE, E.K., PADILLA P.A., WERNER-WASHBURNE, M. 1996. A stationary-phase gene in Saccharomyces cerevisiae is a member of a novel, highly conserved gene family. J. Bacteriol. 178:6865–6872.

    PubMed  CAS  Google Scholar 

  99. SIVASUBRAMANIAM, S., VANNIASHINGHAM, V.M., TAN, CT., CHUA, N.H. 1995. Characterization of HEVER, a novel stress-induced gene from Hevea brasiliensis. Plant Mol. Biol. 29:173–178.

    Article  PubMed  CAS  Google Scholar 

  100. TSUGE, T., KOBAYASHI, H., NISHIMURA, S. 1989. Organization of ribosomal RNA genes in Alternaria alternata Japanese pear pathotype, a host-selective AK-producing fungus. Curr. Genet. 16:267–272.

    Article  PubMed  CAS  Google Scholar 

  101. JOHAL, G.S., GRAY, J., GRUIS, D., BRIGGS, S.P. 1995. Convergent insights into mechanisms determining disease and resistance responses in plant-fungal interactions. Can. J. Bot. 73:S468–S474.

    Article  Google Scholar 

  102. SANFORD, J.C., JOHNSTON, S.A. 1985. The concept of parasite-derived resistance—deriving resistance genes from the parasites’ own genome. J. Theoretical Biol. 113:395–495.

    Article  Google Scholar 

  103. WILSON, T.M.A. 1993. Strategies to protect crop plants against viruses: Pathogen-derived resistance blossoms. Proc. Natl. Acad. Sci. 90:3134–3141.

    Article  PubMed  CAS  Google Scholar 

  104. NAKAYA, K., OMATA, K., OKAHASHI, I., NAKAMURA, Y., KOLKENBROCK, H., ULBRICH, N. 1990. Amino acid sequence and disulfide bridges of an antifungal protein isolated from Aspergillus giganteus. Eur. J. Biochem. 193:31–38.

    Article  PubMed  CAS  Google Scholar 

  105. CORNELISSEN, B.J.C. MELCHERS, L.S. 1993. Strategies for control of fungal diseases with transgenic plants. Plant Physiol. 101:709–712.

    PubMed  CAS  Google Scholar 

  106. YONEYAMA, K., ANZAI, H. 1993. Transgenic plants resistant to diseases by the detoxification of toxins. In: Biotechnology in Plant Disease Control, (I. Chet, ed.), Wiley-Liss, Inc. New York, pp. 115–137.

    Google Scholar 

  107. ANZAI, J., YONEYAMA, K., YAMAGUCHI, I. 1989. Transgenic tobacco resistant to bacterial disease by the detoxification of a pathogenic toxin. Mol. Gen. Genet. 219:492–494.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Daub, M.E., Ehrenshaft, M., Jenns, A.E., Chung, KR. (1998). Active Oxygen in Fungal Pathogenesis of Plants. In: Romeo, J.T., Downum, K.R., Verpoorte, R. (eds) Phytochemical Signals and Plant-Microbe Interactions. Recent Advances in Phytochemistry, vol 32. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5329-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5329-8_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7431-2

  • Online ISBN: 978-1-4615-5329-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics