Skip to main content

Part of the book series: Combinatorial Optimization ((COOP,volume 4))

Abstract

Classical variational calculus was discovered three hundred years ago. Its development is connected with the names of J. Bernoulli, L. Euler, K. Weierstrass, and other famous mathematicians.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. M.A. Aizerman: Introduction into the Dynamics of Automatic Control of Engines (in Russian). Mashgiz. Moscow, 1950.

    Google Scholar 

  2. M.A. Aizerman: Lectures on the Theory of Automatic Control (in Russian). Gostechizdat. Moscow, 1956. (Second edition: Moscow, 1958).

    Google Scholar 

  3. P.S. Aleksandrov: Combinatorial Topology (in Russian). OGIZ Moscow—Leningrad, 1947, 600 pp.

    Google Scholar 

  4. A.A. Andronov: I.A.Vyshnegradski and his role in the constructing of the automatic control theory (in Russian). Izvestija AN SSSR, Section of Techn. Sci., 1949, no. 5, p. 805.

    MathSciNet  Google Scholar 

  5. R. Bellman: Stability Theory of Differential Equations, The RAND Corporation, International Series in Pure and Applied Mathematics. McGraw-Hill Book Company, Inc., 1953. N.Y.-Toronto-London.

    MATH  Google Scholar 

  6. R. Bellman, I. Glicksberg, O. Gross: On the “bang-bang” control problem. Quart. Appl. Math. 14 (1956), 11-18.

    MathSciNet  MATH  Google Scholar 

  7. G.A. Bliss: The problem of Mayer with variable end-points. T zns. Amer. Math. Soc. 19 (1918), 305-314.

    Article  MathSciNet  MATH  Google Scholar 

  8. G.A. Buss: The problem of Bolza in the Calculus of Variations. Annals Math. 33 (1932), 261-274.

    Article  Google Scholar 

  9. G.A. Buss: Lectures on the Calculus of Variations. Chicago University Press, Chicago-London-Toronto, 1946 (Russian translation: Moscow, 1950, Publishing House IL).

    Google Scholar 

  10. V.G. Boltyanski: An example of a two-dimensional compactum whose topo-logical square is three-dimensional (in Russian). Doklady Akad. Nauk SSSR 67 (1949), 597-599 (cf. Amer. Math. Soc. Trans!. 48 (1951), 3-6).

    Google Scholar 

  11. V.G. Boltyanski: On the dimensional fullvaluedness of compacts (in Russian). Doklady Akad. Nauk SSSR 67 (1949), 773-776 (cf. Amer. Math. Soc. Transl. 48 (1951), 7-11).

    Google Scholar 

  12. V.G. Boltyanski: The maximum principle in the theory of optimal processes (in Russian). Doklady Akad. Nauk SSSR 119 (1958), no. 6, 1070-1073.

    Google Scholar 

  13. V.G. BOLTYANSKI: The simulation of linear, time-optimal processes by relay circuits (in Russian). Doklady Akad. Nauk SSSR 139 (1961), no. 2, 275-278 (cf. Soviet Math. Doklady 2 (1961), 904-907).

    Google Scholar 

  14. V.G. Boltyanski: Sufficient conditions for optimality (in Russian). Doklady Akad. Nauk SSSR 140 (1961), no. 5, 994-997.

    Google Scholar 

  15. V.G. Boltyanski: Applications of the theory of optimal prosesses to problems of approximation of functions (in Russian). Trudy Mat. Inst. Steklov 60 (1961), 82-95.

    MathSciNet  Google Scholar 

  16. V.G. Boltyanski: Sufficient conditions for optimality and the justification of the dynamic programming (in Russian). Izvestija Akad. Nauk SSSR, Ser. Mat. 28 (1964), no. 3, 481-514 (cf. SIAM J. Control 4 (1966), no. 4, 326-361).

    Google Scholar 

  17. V.G. Boltyanski: Mathematical Methods of Optimal Control (in Russian), Izdat. “Nauka”, Moscow 1966, 307 pp., English translation: Holt, Rinehart and Winston, Inc., New York—Montreal—London. 1971 xiv + 272 pp.

    Google Scholar 

  18. V.G. Boltyanski: Nonoscillatory optimal synthesis of second order (in Russian). Mat. Zametki 1 (1967), 703-714.

    MathSciNet  Google Scholar 

  19. V.G. Boltyanski: The method of local cross sections in the theory of optimal processes (in Russian). Differencial’nye Uravnenija 4 (1968), no. 12, 2166-2183 (cf. Differential Equations 4 (1968), no. 12, 1659-1671).

    Google Scholar 

  20. V.G. Boltyanski: Mathematical Methods of Optimal Control. Second revised and supplemented edition (in Russian), Izdat. “Nauka”, Moscow 1969, 408 pp., German translation: Mathematische Methoden der optimalen Steuerung. Mathematik und ihre Anwendungen in Physik und Technik, Reihe A, Band 34. Akademische Verlagsgesellschaft Geest und Portig K.-G., Leipzig, 1971, 299 pp.

    Google Scholar 

  21. V.G. Boltyanski: The separation property for a system of convex cones (in Russian). Izv. AN Arm. SSR (Matem.) 7 (1972), no. 4, 250-257.

    Google Scholar 

  22. V.G. Boltyanski: A theorem on the intersection of sets (in Russian). Izv. AN Arm. SSR (Matern.) 7 (1972), no. 5, 325-333.

    Google Scholar 

  23. V.G. Boltyanski: Optimal Control of Discrete Systems (in Russian), Izdat. “Nauka”, Moscow 1973, 446 pp. English translation: A Halsted Press Book. John Wiley Sc Sons, New York—Toronto, 1978, x+392 pp.

    Google Scholar 

  24. V.G. Boltyanski: The tent method in the theory of extremal problems (in Russian). Uspehi Mat. Nauk 30 (1975), 3-65.

    Google Scholar 

  25. V.G. Boltyanski: Separation of a system of convex cones in a topological vector space (in Russian). Doklady Akad. Nauk SSSR 283 (1985), no. 5, 10441047 (cf. Soviet Math. Doklady 32 (1985), no.1, 236-239).

    Google Scholar 

  26. V.G. Boltyanski: The tent method and problems from system analysis (in Russian). In: Sb. Mat. Teor. System (Ed. M. A. Krasnosel’ski). Nauka, Moscow 1986, pp. 5-24.

    Google Scholar 

  27. V.G. Boltyanski: The method of tents in topological vector spaces (in Russian). Doklady Akad. Nauk SSSR 289 (1986), no. 5, 1036-1039 (cf. Soviet Math. Doklady 34 (1987), no. 1, 176-179).

    Google Scholar 

  28. V.G. Boltyanski: The tent method in optimal control theory. In: Optimal Control, Intern. Series of Numerical Math., Vol. 111, ed. by R. Bulirsch, J. Stoer and K.H. Well, Birkhäuser, Basel—Boston—Berlin, 1993. pp. 3-20.

    Google Scholar 

  29. V.G. Boltyanski: The maximum principle - How it came to be? Math. Inst., Techn. Univ. München, 1994, Report no. 526, pp. 1-32.

    Google Scholar 

  30. V.G. Boltyanski: A new point of wiev on linear controlled objects. Journal of Dynamical and Control Systems 2 (1996), no. 1, 69-88.

    Article  MathSciNet  Google Scholar 

  31. V.G. Boltyanski, I.S. Chebotaru: Necessary conditions in a minimax problem (in Russian). Doklady Akad. Nauk SSSR 213 (1973), no. 2 (cf. Soviet Math. Doklady 14 (1973), no. 6, 1665-1668.)

    Google Scholar 

  32. V.G. Boltyanski, I.S. Chebotaro: Minimax optimial-control problems (in Russian). Differencial’nye Uravnenija 10 (1974).

    Google Scholar 

  33. V.G. Boltyanski, R.V. Gamkrelidze, AND L.S. Pontryagin: On the theory of optimal processes (in Russian). Doklady Akad. Nauk SSSR 110 (1956), no. 1, 7-10.

    Google Scholar 

  34. V.G. Boltyanski, R.V. Gamkrelidze, And L.S. Pontryagin: Theory of optimal processes. I. The maximum principle (in Russian). Izv. Akad. Nauk SSSR, Ser. Mat. 24 (1960), no. 1, 3-42 (cf. Amer. Math. Soc. Transl. (2) 18 (1961), 341-382).

    Google Scholar 

  35. V.G. Boltyanski, S. Gorelikova: Optimal synthesis for nonoscillatory controlled objects. Journal of Applied Analysis 3 (1997), no. 1, 1-21.

    Article  MathSciNet  MATH  Google Scholar 

  36. V.G. Boltyanski, H. Martini, P.S. Soltan: Excursions into Combinatorial Geometry. Springer-Verlag, Berlin, 1996.

    Google Scholar 

  37. V.G. Boltyanski, G. Nasritdinov: The synthesis of optimal controls in nonlinear oscillatory systems of second order (Russian). Differencial’nye Uravnenija 3 (1967), 380-394.

    Google Scholar 

  38. V.G. Boltyanski, A. S. Poznyak: Robust maximum principle (to appear).

    Google Scholar 

  39. P. Brunovsky: Every normal linear system has a regular time-optimal synthesis. Math. Slovaca 28 (1978), no. 1, 81-100.

    MathSciNet  MATH  Google Scholar 

  40. D.W. Bushaw: Ph. D. Thesis, Department of Mathematics, Princeton University, 1952.

    Google Scholar 

  41. D.W. Bushaw: Experimental towing tank. Stevens Institute of Technology, Reprint 169, Hoboken, N.Y., 1953.

    Google Scholar 

  42. N. Chetaev: Stability Theory of the Movement (in Russian). Gostehizdat. Moscow, 1946. (Second edition: Moscow, 1955).

    Google Scholar 

  43. V.F. Dem’janov, V.N.Malozemov: Introduction to Minimax (in Russian). Nauka, Moscow, 1972.

    Google Scholar 

  44. A. Dubovitski, A. Milyutin: Extremum problems with constraints (in Russian). Doklady AN SSSR 149 (1963), no. 4, 759-762.

    Google Scholar 

  45. A. Dubovitski, A. Milyutin: Extremum problems with constraints (in Russian). Zh. Vychisl. Mat. i Mat. Fix. 5 (1965), no. 3, 395-453.

    Google Scholar 

  46. SH.-CH. Fang, S. Puthenpura: Linear Optimization and Extensions: Theory and Algorithms. Prentice Hall, Englewood Cliffs, New Jersey, 1993.

    MATH  Google Scholar 

  47. J. Farkas: Theorie der einfachen Ungleichungen. J. reine angew. Math. 124 (1902), 1-27.

    Google Scholar 

  48. A.A. Feldbaum: Electrical Systems of Automatic Control (in Russian). Oborongiz. Moscow, 1951.

    Google Scholar 

  49. A.A. Feldbaum: The simplest relay systems of automatic control (in Russian). Avtomatika i Telemehanika 10 (1949), no. 1, 249-266.

    Google Scholar 

  50. A.A. Feldbaum: Optimal processes in systems of automatic control (in Russian). Avtomatika i Telemehanika 14 (1953), no. 6, 712-728.

    Google Scholar 

  51. A.A. Feldbaum: On synthesis of optimal systems of automatic control (in Russian). Transactions of the 2nd National Conference on the Theory of Automatic Control, Vol. 2, pp. 325-360. Izdat. AN SSSR, Moscow-Leningrad, 1955.

    Google Scholar 

  52. A.A. Feldbaum: On synthesis of optimal systems with the aid of phase space (in Russian). Avtomatika i Telemehanika 16 (1955), no. 2, 129-149.

    MathSciNet  Google Scholar 

  53. A.A. Feldbaum: Computational Devices in Automatic Control (in Russian). Fizmatgiz. Moscow, 1959, 800 pp.

    Google Scholar 

  54. R.V. Gamkrelidze: On the theory of optimal processes in linear systems (in Russian). Doklady AN SSSR 116 (1957), no. 1, 9-11.

    MathSciNet  MATH  Google Scholar 

  55. R.V. Gamkrelidze: The theory of time-optimal processes in linear systems (in Russian). Izv. AN SSSR, Ser. Mat. 22 (1958), 449-474.

    MathSciNet  MATH  Google Scholar 

  56. R.V. Gamkrelidze: On the general theory of optimal processes (in Russian). Doklady AN SSSR 123 (1958), no. 2, 223-226. (Engl. translation: Automation Express 1 (1959), 37-39).

    Google Scholar 

  57. R.V. Gamkrelidze: Time-optimal processes with constrained phase coordinates (in Russian). Doklady AN SSSR 125 (1959), no. 3, 475-478.

    MathSciNet  MATH  Google Scholar 

  58. M. Glezerman, L. Pontryagin: Intersections in manifolds (in Russian). Uspehi Mat. Nauk 2 (17), 58-155 (1947).

    MathSciNet  Google Scholar 

  59. L.M. Graves: A transformation of the problem of Lagrange in the Calculus of Variations. Trans. Amer. Math. Soc. 35 (1933), 675-682.

    Article  MathSciNet  Google Scholar 

  60. D. Den Hertog: Interior Point Approach to Linear, Quadratic and Convex Programming. Algorithms and Complexity. Kluwer Academic Publishers, Dordrecht—Boston—London, 1994.

    Google Scholar 

  61. A.M. Hopein: A phase-plane approach to the composition of saturating servomechanisms. Trans. AIEE 70 (1951), no. 1, 631-639.

    Google Scholar 

  62. R. Horst, P.M. Pardalos, And N.V. Thoai: Introduction to Global Optimization. Kluwer Academic Publishers, Dordrecht—Boston—London, 1995.

    MATH  Google Scholar 

  63. J.W. Kennedy, L.V. Quintas, AND M.M. Syslo: The theorem on planar graphs. Historia Mathematica 12 (1985), 356-368.

    MathSciNet  MATH  Google Scholar 

  64. H.W. Kuhn, A.W. Tucker: Nonlinear programming. Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley, CA, 1951, pp. 481-492.

    Google Scholar 

  65. J.P. Lasalle: Abstract 2471. Bull. Amer. Math. Soc. 60 (1954), p. 154.

    Google Scholar 

  66. J.P. Lasalle: The time optimal control problem. Contributions to the Theory of Nonlinear Oscillations 5 (1959), Princeton.

    Google Scholar 

  67. J.P. Lasalle, S Lefschetz: Stability by Liapunov’s Direct Method with Applications. Academic Press, New York—London, 1961.

    Google Scholar 

  68. S. Lefschetz: Algebraic Topology. American Math. Society Colloquium Publications, V. 27. American Math. Society, New York, 1942, vi+389 pp.

    Google Scholar 

  69. A. Lerner: Improving of dynamic properties of automatic compensators with the aid of nonlinear connections, I (in Russian). Avtomatika i Telemehanika 13 (1952), no. 2, 134-144.

    Google Scholar 

  70. A. Lerner: Constructing of time-optimal systems of automatic control with constrained values of coordinates of controlled object (in Russian). Transactions of the 2nd National Conference on the Theory of Automatic Control,Vol. 2, pp. 305-324. Izdat. AN SSSR, Moscow—Leningrad, 1955.

    Google Scholar 

  71. J.B. Lewis: The use of nonlinear feedback to improve the transient reponse of a servomechanism. Trans. AIES 71 (1952), 449-453.

    Google Scholar 

  72. A. Liapounoff: Probleme général de la stabilité du mouvement. Ann. Fac. Sci. Univ. Toulouse 9 (1907), 203-475.

    Article  MathSciNet  MATH  Google Scholar 

  73. I.G. Malkin: The Theory of Stability of Movements (in Russian). Gostehizdat. Moscow, 1952.

    Google Scholar 

  74. I.G. Malkin: The Methods of Poincaré and Liapounoff in the Theory of Nonlinear Oscillations (in Russian). Gostehizdat. Moscow, 1949.

    Google Scholar 

  75. A. Mayer: Zur Aufstellung der Kriterien des Maximums und Minimums der einfachen Integrale bei variablen Grenzwerten. Leipziger Berichte 36 (1884), 99-128.

    Google Scholar 

  76. A. Mayer: Zur Aufstellung der Kriterien des Maximums und Minimums der einfachen Integrale bei variablen Grenzwerten. Leipziger Berichte 48 (1896), 436-465.

    Google Scholar 

  77. E. Mcshane: On multipliers for Lagrange problem. Amer. J. Math. 61 (1939), 809-819.

    Article  MathSciNet  Google Scholar 

  78. E. Mcshane: The calculus of variations from the beginning through optimal control theory. In: Optimal Control and Differential Equations. Proceedings of the Conf., Univ. of Oklahoma, Norman. March 24-27, 1977, Ed. A.B. Schwarzkopf, Academic Press, New York, 1978.

    Google Scholar 

  79. D. Mcswell, I.A. Vyshnegradski, And A.A. Stodola: The Theory of Automatic Control (in Russian). Series “Classics of Sciences”. Izdat. AN SSSR, Moscow, 1949.

    Google Scholar 

  80. L.W. Neustadt: A general theory of extremals. Journal of Computer and System Sciences 3 (1969), no. 1, 57-92.

    Article  MathSciNet  MATH  Google Scholar 

  81. H. Poincaré: Méthods nouvelles de méchanique céleste. Vol. 1, 3. Gauthier-Villars, Paris, 1892.

    Google Scholar 

  82. L. Pontryagin: Optimal control processes (in Russian). Uspehi Mat. Nauk 14 (1959), 3-20.

    MathSciNet  Google Scholar 

  83. L. Pontryagin: Optimal control processes. Proceedings of the International Congress of Mathematicians, August 14-21, 1958, pp. 182-202.

    Google Scholar 

  84. L. Pontryagin: Combinatorial Topology (in Russian), OGIZ, Moscow—Leningrad, 1947, 143 pp.

    Google Scholar 

  85. L.S. Pontryagin, V.G. Boltyanski, R.V. Gamkrelidze, And E.F. Mishchenko: Mathematical Theory of Optimal Processes (in Russian). Fizmatgiz. Moscow, 1961. 391 pp.

    Google Scholar 

  86. W.T. Reid: A historical note on the maximum principle. SIAM Review 20 (1978), no. 3, 580-582.

    Google Scholar 

  87. R.T. Rockafellar, R. Tyrrell: Convex Analysis. Princeton Math. Series, V. 28. Princeton University Press, 1970, 451 pp.

    Google Scholar 

  88. L.I. Rozonoer: The L.S.Pontryagin Maximum Principle in the theory of optimal systems, I (in Russian). Avtomatika i Telemehanika 20 (1959), no. 10, 1320-1334. (English translation: Automation and Remote Control 20 (1959), 1288-1302).

    Google Scholar 

  89. L.I. Rozonoer: The L.S.Pontryagin Maximum Principle in the theory of optimal systems, II (in Russian). Avtomatika i Telemehanika 20 (1959), no. 11, 1441-1458. (English translation:, Automation and Remote Control 20 (1959), 1405-1421).

    Google Scholar 

  90. L.I. Rozonoer: The L.S.Pontryagin Maximum Principle in the theory of optimal systems, III (in Russian). Avtomatika i Telemehanika 20 (1959), no. 12, 1561-1578. (English translation: Automation and Remote Control 20 (1959), 1517-1532).

    Google Scholar 

  91. A. Sard: The measure of the critical values of differentiable maps. Bull. Amer. Math. Soc. 48 (1942), 883-890.

    Article  MathSciNet  MATH  Google Scholar 

  92. H. Tsien: Engineering Cybernetics. McGraw Hill, New York, 1954.

    Google Scholar 

  93. A.A. Voronov: Elements of the Theory of Automatic Control (in Russian). Voenizdat. Moscow, 1950.

    Google Scholar 

  94. I.A. Vyshnegradski: On regulators of direct action (in Russian). Izv. St. Petersburg Practical Technological Institute, pp. 21-62, St. Petersburg, 1877.

    Google Scholar 

  95. I.M. Yaglom, V.G. Boltyanski: Convex Figures (in Russian). Gostehizdat. Moscow-Leningrad, 1951, 343 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Boltyanski, V., Martini, H., Soltan, V. (1999). Nonclassical Variational Calculus. In: Geometric Methods and Optimization Problems. Combinatorial Optimization, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5319-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5319-9_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7427-5

  • Online ISBN: 978-1-4615-5319-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics