Skip to main content

Proteases from aquatic organisms and their uses in the seafood industry

  • Chapter
Fisheries Processing

Abstract

The term ‘fish proteases’ refers to hydrolytic enzymes from aquatic species that catalyze degradation of peptide bonds in protein molecules. Proteases play a vital role in biotechnology, food processing and other industries, as well as in a variety of physiological processes (Table 6.1). There is considerable demand for enzymes with the right combination of properties for specific applications in industry. Worldwide sales of industrial enzymes were estimated at about $1.5 billion for 1990 with approximately 48% of all these sales deriving from proteases (Knorr and Sinskey, 1985). Proteases used in industry are mainly derived from plant, animal and microbial sources, whereas their counterparts derived from marine and other aquatic sources have not been extensively used. Some of the reasons for the under-utilization of fish proteases include the following:

  1. 1.

    relatively few studies have been carried out on these enzymes, hence there is limited information about their potential;

  2. 2.

    the seasonal nature of the source material which precludes supply in a steady manner;

  3. 3.

    the unfavorable attitude by workers to the ‘odors’ associated with the source material (i.e. fish offal).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almas, K.A. (1990) Utilization of marine biomass for production of microbial growth media and biochemicals, in Advances in Fisheries Technology and Biotechnology for Increased Profitability, (eds M.N. Voigt and J.R. Botta), Technomic, Lancaster, PA, pp. 361–372.

    Google Scholar 

  • Anonymous. (1975) Production process for salted herrings (Matjes). British Patent 1 403 221.

    Google Scholar 

  • Anonymous. (1990) Enzyme breaks up trout roe. Fish Farming Int., August, 71.

    Google Scholar 

  • Arunchalam, K. and Haard, N.F. (1985) Isolation and characterization of pepsin from Polar cod, Boregadus saida. Comp. Biochem. Physiol., 80B, 467–473.

    Article  CAS  Google Scholar 

  • Asgeirson, B. and Bjarnason, J.B. (1988) Studies on an enzyme preparation from cod viscera. Report RH-1288, Science Institute, University of Iceland, Reykjavik, Iceland.

    Google Scholar 

  • Asgeirson, B. and Bjarnason, J.B. (1989) Purification and characterization of trypsin from the poikilotherm Gadus morhua. Eur. J. Biochem., 180, 85–94

    Article  Google Scholar 

  • Aso, K., Kimura, H., Watanabe, M. and Arai, S. (1985) Chemical properties of enzymatically modified proteins produced from soy protein by covalent attachment of methionine. Agric. Biol. Chem., 49, 1649–1654.

    Article  CAS  Google Scholar 

  • Baranowski, E.S., Nip, W.K. and Moy, J.H. (1984) Partial characterization of a crude enzyme extract from freshwater prawn, Machrobranchium rosenbergii. J. Food Sci., 49, 1494–1495.

    Article  CAS  Google Scholar 

  • Benediktsson, B. (1987) Production of proteolytic enzymes from cod viscera. Internal report, Icelandic Fisheries Laboratories, Reykjavik, Iceland.

    Google Scholar 

  • Bernholdt, H.F. (1975) Meat and other proteinaceous foods, in Enzymes in Food Processing, 2nd ed., (ed. G. Reed), Academic Press, New York, pp. 473–492.

    Google Scholar 

  • Bracho, G.E. and Haard, N.F. (1991) Characterization of alkaline metalloproteinases with collagenase activity from the muscle of Pacific rockfish (Sebastes sp.), in Proceedings of Joint Meeting of the Atlantic Fisheries Technologists and Tropical/Subtropical Fisheries Technologists, (ed. S.W. Orwell).

    Google Scholar 

  • Brewer, P., Helbig, N. and Haard, N.F. (1984) Atlantic cod pepsin. Characterization and use as a rennet substitute. Can. Inst. Food Sci. Technol. J., 17, 38–43.

    CAS  Google Scholar 

  • Campbell-Platt, G. (1987) Fermented Foods of the World — A Dictionary and Guide, Butterworths, London.

    Google Scholar 

  • Cano-Lopez, A., Simpson, B.K. and Haard, N.F. (1987) Extraction of caroteno-protein from shrimp process wastes with the aid of trypsin from Atlantic cod. J. Food Sci., 52, 503–504, 506.

    Article  CAS  Google Scholar 

  • Chen, C.-S., Yan, T.-R. and Chen, H.-Y. (1978) Purification and properties of trypsinlike enzymes and a carboxypeptidase A from Euphasia superba. J. Food Biochem., 21, 349–366.

    Article  Google Scholar 

  • Chen, H.-M. and Meyers, S.P. (1982) Extraction of astaxanthin pigment from crawfish waste using a soy oil process. J. Food Sci., 47, 892–900.

    Article  CAS  Google Scholar 

  • Chen, Y. (1992). Characterization of semi-purified collagenase fraction from lobster hepatopancreas. MSc Thesis, McGill University, Montreal, Canada.

    Google Scholar 

  • Cronlund, A.L. and Woychik, J.H. (1987) Solubilization of collagen in restructured beef with collagenases and amylase. J. Food Sci., 52, 857–860.

    Article  CAS  Google Scholar 

  • de Koning, PJ. (1978) Coagulating enzymes in cheese making. Dairy Ind. Int. 43, 7.

    Google Scholar 

  • Dixon, B. (1990) Cod waste yields useful enzymes. Biotechnology, 8, 791.

    Article  Google Scholar 

  • Dransfield, E. and Etherington, D. (1981) In Enzymes and Food Processing, (eds G.G. Birch, N. Blankebrough and K.J. Parker), Applied Science, London, pp. 177–178.

    Chapter  Google Scholar 

  • Eisen, A.Z. and Jeffrey, J.J. (1969) An extractable collagenase from crustacean hepatopancreas. Biochim. Biophys. Ada, 191, 517–526.

    Article  CAS  Google Scholar 

  • Eisen, A.Z., Henderson, K.D., Jeffrey, J.J. and Bradshaw, R.A. (1973) A collagenolytic protease from the hepatopancreas of the fiddler crab, Uca pugilator. Purification and properties. Biochemistry, 12, 1814–1822.

    Article  CAS  Google Scholar 

  • Eriksson, C. (1975) Method for controlling the ripening process of herring. Canadian Patent 969 419.

    Google Scholar 

  • Fehmerling, G.B. (1973) Separation of edible tissues from edible flesh of marine creatures. US Patent 3 729 324.

    Google Scholar 

  • Fox, J.W., Shannon, J.D. and Bjarnason, J.B. (1991) Proteinases and their inhibitors in biotechnology, in ‘Enzymes in Biomass Conversion,’ (eds G.F. Leatham and M.E. Himmel), ACS, Washington, DC.

    Google Scholar 

  • Fruton, J.S. and Bergmann, M. (1940) The specificity of salmon pepsin. J. Biol. Chem., 204, 559–560.

    Google Scholar 

  • Geist, G.M. and Crawford, D.L. (1974) Muscle cathepsins in three species of Pacific sole. J. Food Sci., 39, 548–551.

    Article  CAS  Google Scholar 

  • Gildberg, A. (1988) Aspartic proteinase in fishes and aquatic invertebrates. Comp. Biochem. Physiol., 91B, 425–435.

    CAS  Google Scholar 

  • Gildberg, A. (1993) Enzymic processing of marine raw materials. Process Brochem., 28, 1–5.

    Article  CAS  Google Scholar 

  • Gildberg, A. and Almas, K. A. (1986). Utilization of fish viscera, in Food Engineering and Process Applications, (eds M. Le Maguer and P. Jelen), Applied Science, London, Vol. 2, p. 383.

    Google Scholar 

  • Gildberg, A. and Raa, J. (1983) Purification and characterization of pepsins from Arctic fish capelin (Mallotus villosus) . Comp. Biochem. Physiol., 75A, 337–342.

    Article  CAS  Google Scholar 

  • Gill, T.A. (1992) Unpublished data, Technical University of Nova Scotia, Halifax., NS, Canada.

    Google Scholar 

  • Godfrey, T. and Reichelt, J. (1983) Industrial Enzymology, The Nature Press, New York.

    Google Scholar 

  • Grant, G.A., Sacchettini, J.C. and Welgus, H.G. (1983) A collagenolytic serine protease with trypsinlike specificity from the fiddler crab, Uca pugilator. Biochemistry, 22, 354–356.

    Article  CAS  Google Scholar 

  • Haard, N.F. (1986) Atlantic cod protease. I. Characterization with casein and milk substrate and influence of Sepharose immobilization on salt activation, temperature characteristics and milk clotting reactions. J. Food Sci., 51, 313–316, 326.

    Article  CAS  Google Scholar 

  • Haard, N.F., Helbig, N. and Feltham, L.A.W. (1981) The temperature characteristics of pepsin from two stocks of American smelt (Osmerus mordax), in Proceedings Workshop of the Labrador Coasting Offshore Region, Newfoundland Institute of Cold Ocean Science, St Johns, pp. 174–196.

    Google Scholar 

  • Haard, N.F., Feltham, L.A.W., Helbig, N. and Squires, J. (1982) Modification of proteins with proteolytic enzymes from the marine environment, in Modification of Proteins, (eds R.L. Feeney and J.R. Whitaker), ACS, Washington, DC., pp. 223–234.

    Chapter  Google Scholar 

  • Haard, N.F., Shamsuzzaman, K., Brewer, P. and Arunchalam, K. (1983) Enzymes from marine organisms as rennet substitutes, in Use of Enzymes in Food Technology, (ed. P. Dupuy), Lavoisier, Paris, pp. 237–241.

    Google Scholar 

  • Haard, N.F., Kariel, N., Herzberg, G. and Feltham, L.A.W. (1985) Stabilization of protein and oil in fish silage for use as ruminant feed supplement. J. Sci. Food Agric., 36, 229–241.

    Article  CAS  Google Scholar 

  • Hajos, G. (1986) Incorporation of essential amino acids into protein by enzymatic peptide modification (EPM). Nahrung, 30, 418–422.

    Article  CAS  Google Scholar 

  • Hameed, K.S. and Haard, N.F. (1985) Isolation and characterization of cathepsin C from Atlantic shortfinned squid, Illex illecebrosus. Comp. Biochem. Physiol., 82B, 241–246.

    CAS  Google Scholar 

  • Hara, K., Suzumatsu, A. and Ishihara, T. (1988) Purification and characterization of cathepsin B from carp ordinary muscle. Nihon Suisan Gakkaishi., 54, 1243–1252.

    Article  CAS  Google Scholar 

  • Hempl, E. (1983) Taking a short-cut from the laboratory to industry-scale production. Infofish Marketing Digest, 4, 30.

    Google Scholar 

  • Hjelmeland, K. and Raa, J. (1982) Characteristics of two trypsin type isozymes isolated from the Arctic capelin (Mallotus villosus). Comp. Biochem. Physiol., 71B, 557–562.

    CAS  Google Scholar 

  • Hultin, H.O. (1978) Enzymes from organisms acclimated to low temperatures, in Enzymes. The interface Between Technology and Economics., (eds J.P. Danehy and B. Wolnak, eds), Marcel Dekker, New York, pp. 161–178.

    Google Scholar 

  • In, T. (1990) Seafood flavourants produced by enzymatic hydrolysis, in Advances in Fisheries Technology and Biotechnology for Increased Profitability, (eds M.N. Voigt and J.R. Botta), Technomic, Lancaster, PA, pp. 425–436.

    Google Scholar 

  • Jacobsen, F. and Lykke-Rasmussen, O. (1984), Energy-savings through enzymatic pretreatment of stickwater in the fish meal industry. Proc. Biochem., 19, 165–169.

    Google Scholar 

  • Jany, K.-D. (1976) Studies on the digestive enzymes of the stomachless bonefish Carassius auratus gibelio (Bloch): endopeptidase. Comp. Biochem. Physiol., 53B, 31–38.

    Google Scholar 

  • Joakimsson, K.G. (1984) Enzymatic deskinning of herring (Clupea harengus). Thesis, Institute of Fisheries, University of Tromso, Norway.

    Google Scholar 

  • Kalac, J. (1978) Studies on herring (Clupea harengus L.) and capelin (Mallotus villosus) pyloric ceca protease. III. Characterization of anionic fractions of chymotrypsins. Biologia (Bratslava), 33, 939–945.

    CAS  Google Scholar 

  • Knorr, D. and Sinskey, A.J. (1985) Biotechnology in food production and processing. Science, 229, 1224–1229.

    Article  CAS  Google Scholar 

  • Laskowski, M. (1986) Protein inhibitors of serine protease-mechanism and classification. Adv. Exp. Med. Biol., 199, 1–17.

    CAS  Google Scholar 

  • Lee, Y.Z., Simpson, B.K. and Haard, N.F. (1982) Supplementation of squid fermentation with proteolytic enzymes. J. Food Biochem., 6, 127–134.

    Article  CAS  Google Scholar 

  • Lim, D. and Shipe, W.F. (1972) Proposed mechanism for the antioxidative action of trypsin in milk. J. Dairy Sci., 55, 753–758.

    Article  CAS  Google Scholar 

  • Long, A. and Haard, N.F. (1988) The effect of carotenoid protein association on pigmentation and growth rates of rainbow trout, Salmo gairdneri, in Proceedings of the Aquaculture International Congress, Vancouver, BC, pp. 99–101.

    Google Scholar 

  • Lorier, M.A. and Aitken, B.L. (1991) Method for treating fish with alpha-2-macroglobulin. US Patent 5 013 568.

    Google Scholar 

  • Low, P.S., Bada, J.L. and Somero, G.N. (1973) Temperature adaptation of enzymes: roles of free energy, the enthalpy, and the entropy of activation. Proc. Natl. Acad. Sci. USA, 70, 430–432.

    Article  CAS  Google Scholar 

  • Manu-Tawiah, W. and Haard, N.F. (1987) Recovery of carotenoprotein from the exoskeleton of snow crab, Chionectes opilio. Can. Inst. Food Sci. Technol. J., 20, 31–33.

    CAS  Google Scholar 

  • Marshall, M. (1990) Unpublished data. University of Florida, Gainesville.

    Google Scholar 

  • Merrett, T.G., Bar-Eli, E. and Van Vunakis, H. (1969) Pepsinogens A, C, and D from the smooth dogfish. Biochemistry, 8, 3696–3702.

    Article  CAS  Google Scholar 

  • Metz, F.E., Boyce, F.O. and Sigmiller, J.L. (1975). Process for making barbecue sauce with a tenderizer. US Patent 3 930 030.

    Google Scholar 

  • Mihalyi, E. (1978), Application of Proteolytic Enzymes to Protein Structure Studies, 2nd edn, CRC Press, Palm Beach, FL,Vol. 1, pp. 215–308.

    Google Scholar 

  • Miller, A.J., Strange, E.D. and Whiting, R.C. (1989) Improved tenderness of restructured beef steaks by a microbial collagenase derived from Vibrio B-30. J. Food Sci., 54, 855–857.

    Article  CAS  Google Scholar 

  • Mohr, V. (1980). Enzyme technology in the meat and fish industries. Process Biochem., August/September, 18-21, 32.

    Google Scholar 

  • Murakami, K. and Noda, M. (1981) Studies on proteinases from the digestive organs of sardine — purification and characterization of three alkaline proteinases from the pyloric ceca. Biochim. Biophys. Acta, 658, 17–26.

    Article  CAS  Google Scholar 

  • Nip, W.K., Moy, J.H. and Tzang, Y.Y. (1985) Effect of purging on quality changes of ice-chilled freshwater prawn, M. rosenbergii. J. Food Technol., 20, 9–15.

    Article  Google Scholar 

  • Opshaug, K.R. (1982) Method of enzyme maturing of fish. PCT Patent No. 82/03533.

    Google Scholar 

  • Overnell, J. (1973) Digestive enzymes of the pyloric ceca and the associated mesentery in the cod (Gadus morhua). Comp. Biochem. Physiol., 46B, 519–531.

    Google Scholar 

  • Owen, T.G. and Wiggs, A.J. (1971) Thermal compensation in the stomach of the brook trout (Salvelinus fontinalis Mitchill). Comp. Biochem. Physiol., 40B, 465–473.

    Google Scholar 

  • Pan, B.S. (1990). Recovery of shrimp waste for flavourant, in Advances in Fisheries Technology and Biotechnology for Increased Profitability, (eds M.N. Voigt and J.R. Botta), Technomic, Lancaster, PA, pp. 437–452.

    Google Scholar 

  • Pfleiderer, V.G., Zwilling, R. and Sonneborn, H.-H. (1967) Eine protease vom molekulargewicht 11,000 and eine trypsinahinche frackion aus Astacus fluviatilis. Z. Physiol. Chem., 348, 1319–13

    Article  CAS  Google Scholar 

  • Raa, J. (1990). Biotechnology in aquaculture and the fish processing industry. A success story in Norway, in Advances in Fisheries Technology and Biotechnology for Increased Profitability, (eds M.N. Voigt and J.R. Botta), Technomic, Lancaster, PA, pp. 509–524.

    Google Scholar 

  • Raa, J. and Gildberg, A. (1982). Fish silage: A review. CRC Crit. Rev. Food Sci. Nutr., 16, 383–419.

    Article  CAS  Google Scholar 

  • Racicot, W.F. (1984). A kinetic and thermodynamic comparison of bovine and dogfish chymotrypsins. PhD thesis, University of Massachusetts, Amherst, MA.

    Google Scholar 

  • Raksakulthai, N. and Haard, N.F. (1992) Correlation between the concentration of peptides and amino acids and the flavor of fish sauce. ASEAN Food J., 7 86–90.

    CAS  Google Scholar 

  • Raksakulthai, N., Lee, Y.Z. and Haard, N.F. (1986) Influence of mincing and fermentation aids on fish sauce prepared from male, inshore capelin, Mallotus villosus. Can. Inst. Food Sci. Technol. J., 19, 28–33.

    CAS  Google Scholar 

  • Ramakrishan, M., Hultin, H.O. and Atallah, M.T. (1987) A comparison of dogfish and bovine chymotrypsins in relation to protein hydrolysis. J. Food Sci., 52, 1198–1202.

    Article  Google Scholar 

  • Sanchez-Chiang, L. and Ponce, O. (1981) Gastricinogens and gastricins from Merluccius gayi — purification and properties. Comp. Biochem. Physiol., 68B, 251–257.

    CAS  Google Scholar 

  • Schmitt, A. and Siebert, G. (1967) Distinguishing aliphatic dipeptidases from cod muscle. Z. fur Physiol. Chem., 348, 1009–1016.

    Article  CAS  Google Scholar 

  • Shamsuzzaman, K. and Haard, N.F. (1983) Evaluation of harp seal protease as a rennet substitute for Cheddar cheese. J. Food Sci., 48, 179–183.

    Article  CAS  Google Scholar 

  • Shamsuzzaman, K. and Haard, N.F. (1984) Characterization of a chymosin-like enzyme from the gastric mucosa of harp seal Pagophilus groenlandicus. Can. J. Biochem. Cell Biol., 62, 699–708.

    Article  CAS  Google Scholar 

  • Shamsuzzaman, K. and Haard, N.F. (1985) Milk clotting activity and cheese making properties of a chymosin-like enzyme from harp seal, Pagophilus groenlandicus. J. Food Biochem., 9, 173–192.

    Article  CAS  Google Scholar 

  • Sherekar, S.V., Gore, M.S. and Ninjoor, V. (1988) Purification and characterization of cathepsin B from the skeletal muscle of fresh water fish, Tilapia mossambica. J. Food Sci., 53, 1018–1023.

    Article  CAS  Google Scholar 

  • Siebert, G. and Schmitt, A. (1965) Fish tissue enzymes and their role in determining changes in fish, in The Technology of Fish Utilization, (ed. R. Kreuzer), Fishery News (Books) Ltd, London, pp. 47–52.

    Google Scholar 

  • Simpson, B.K. and Haard, N.F. (1984a) Trypsin from Greenland cod as a food processing aid. J. Appl. Biochem., 6 135–143.

    CAS  Google Scholar 

  • Simpson, B.K. and Haard, N.F. (1984b) Trypsin from Greenland cod, Gadus ogac. Kinetic and thermodynamic characteristics. Can. J. Biochem. Cell Biol., 62, 894–900.

    Article  CAS  Google Scholar 

  • Simpson, B.K. and Haard, N.F. (1984c) Trypsin from Greenland cod, Gadus ogac. Isolation and comparative properties. Comp. Biochem. Physiol. 79B, 613–622.

    CAS  Google Scholar 

  • Simpson, B.K. and Haard, N.F. (1985a) Extraction of carotenoprotein from shrimp processing offal with the aid of trypsin. J. Appl. Biochem. 7, 212–222.

    CAS  Google Scholar 

  • Simpson, B.K. and Haard, N.F. (1985b) Characterization of the trypsin fraction from cunner, Tautogolabrus adspersus. Comp. Biochem. Physiol. 80B, 475–480.

    CAS  Google Scholar 

  • Simpson, B.K. and Haard, N.F. (1987a) Cold adapted enzymes from fish, in Food Biotechnology, (ed. D. Knorr), Marcel Dekker, New York, pp. 495–527.

    Google Scholar 

  • Simpson, B.K. and Haard, N.F. (1987b). Trypsin and trypsinlike enzymes from the stomachless cunner. J. Agric. Food Chem., 35, 652–656.

    Article  CAS  Google Scholar 

  • Simpson, B.K., Simpson, M.V. and Haard, N.F. (1989) On the mechanism of enzyme action: digestive proteases from selected marine organisms. Biotechnol. Appl. Biochem., 11, 226–234.

    CAS  Google Scholar 

  • Squires, E.J., Haard, N.F. and Feltham, L.A.W. (1986a) Pepsin isozymes from Greenland cod, Gadus ogac. 1. Purification and physical properties. Can. J. Biochem. Cell Biol., 64, 205–214.

    Article  CAS  Google Scholar 

  • Squires, E.J., Haard, N.F. and Feltham, L.A.W. (1986b) Pepsin isozymes from Greenland cod. Gadus ogac. 2. Substrate specificity and kinetic properties. Can. J. Biochem. Cell Biol., 64, 215–222.

    Article  CAS  Google Scholar 

  • Stefansson, G. and Steingrimsdottir, U. (1989a). Descaling of redfish. Internal Report, Icelandic Fisheries Laboratories, Reykjavik, Iceland.

    Google Scholar 

  • Stefansson, G. and Steingrimsdottir, U. (1989b). Enzymatic descaling of haddock. Internal Report, Icelandic Fisheries Laboratories, Reykjavik, Iceland.

    Google Scholar 

  • Stefansson, G. and Steingrimsdottir, U. (1990). Application of enzymes for fish processing in Iceland — present and future aspects, in Advances in Fisheries Technology and Biotechnology for Increased Profitability, (eds M.N. Voigt and J.R. Botta), Technomic, Lancaster, PA, pp. 237–250.

    Google Scholar 

  • Stefansson, G., Johannesson, J. and Magnusdottir, E. (1987) Removal of intestines from scallop muscle with enzymes. Internal Report, Icelandic Fisheries Laboratories, Reykjavik, Iceland.

    Google Scholar 

  • Steingrimsdottir, U. (1987). Enzymatic removal of cod liver membrane. Internal Report, Icelandic Fisheries Laboratories, Reykjavik, Iceland.

    Google Scholar 

  • Steingrimsdottir, U. and Stefansson, H. (1988). Enzymatic removal of swimbladder membrane. Internal Report, Icelandic Fisheries Laboratories, Reykjavik, Iceland.

    Google Scholar 

  • Sugihara, T., Yashima, C., Tamura, H., Kawasaki, M. and Shimizy, S. (1973) Process for preparation of Ikuna (salmon egg). US Patent 3 759 718.

    Google Scholar 

  • Tanji, M., Kageyama, T. and Takahashi, K. (1988) Tuna pepsinogens and pepsins. Purification, characterization and amino terminal sequences. Eur. J. Biochem., 177, 251–259.

    Article  CAS  Google Scholar 

  • Ting, C.-Y., Montgomery, M. and Anglemier, A.F. (1968) Partial purification of salmon muscle cathepsins. J. Food Sci., 33, 617–621.

    Article  CAS  Google Scholar 

  • Twining, S.S., Alexander, P.A., Huibregtse, K. and Glick. D.M. (1983) A pepsinogen from rainbow trout (Salmo gaidneri). Comp. Biochem. Physiol., 75B, 109–112.

    CAS  Google Scholar 

  • Warrier, S.B.K., Ninjoor, V. and Nadkarni, G.B. (1985) Involvement of hydroly-tic enzymes in the spoilage of Bombay duck (Harpodon nehereus): technical report, in Harvest and Postharvest Technology of Fish, Society of Fisheries Technology, India, pp. 470–472.

    Google Scholar 

  • Wasserman, B.P. (1990) Evolution of enzyme technology: progress and prospects. Food Technol., 44, 118–122.

    CAS  Google Scholar 

  • Wiggs, A.J. (1974) Seasonal changes in the thyroid proteinase of a teleost fish, the burbot, lota lota, L. Can. J. Zool., 52, 1071–1078.

    Article  CAS  Google Scholar 

  • Wray, T. (1988) Fish processing: new uses for enzymes. Food Manufacture, 63(7) 48.

    Google Scholar 

  • Yoshinaka, R., Sato, M., Suzuki, T. and Ikeda, S. (1984). Enzymatic characterization of anionic trypsin of the catfish Parasilurus asotus. Comp. Biochem. Physiol., 77B, 1–6.

    CAS  Google Scholar 

  • Zeef, A.H. and Dennison, C. (1988) A novel cathepsin from the mussel (Perna perna Linne). Comp. Biochem. Physiol., 90B, 204–210.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Haard, N.F., Simpson, B.K. (1994). Proteases from aquatic organisms and their uses in the seafood industry. In: Martin, A.M. (eds) Fisheries Processing. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5303-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5303-8_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7420-6

  • Online ISBN: 978-1-4615-5303-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics