Skip to main content

Production of fish protein hydrolyzates by microorganisms

  • Chapter
Book cover Fisheries Processing

Abstract

Of the current world fish landing of around 100 million tonnes, consumer preference is restricted to only a few selected items. A significant proportion of total available fish forms the by-catch of shrimp trawling, and includes non-conventional species which are not commercially exploited. Nevertheless, these fish are sources of nutritive proteins which could be utilized for satisfying human protein requirements. The necessity of exploitation of under-utilized fish species as well as reduction of postharvest fishery losses have been pointed out by several authors (James, 1986; Morrissey, 1988; Burt, Hardy and Whittle, 1990; Sikorski, 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler-Nissen, J. (1977) Enzymatic hydrolysis of fish proteins. Process Biochem., 12, 18–23.

    CAS  Google Scholar 

  • Adler-Nissen, J. (1985) Enzymatic Hydrolysis of Food Proteins, Elsevier, New York.

    Google Scholar 

  • Alur, M.D., Nerkar, D.P. and Venugopal, V. (1988) Growth and protease secretion by spoilage bacteria: Influence of nitrogen fraction of proteinaceous foods on Aeromonas hydrophila. J. Food Sci., 53, 243–246.

    Article  CAS  Google Scholar 

  • Archer, M.C., Ragnarsson, J.O., Tannenbaum, S.R. and Wang, D.I.C. (1973). Enzymatic solubilization of an insoluble substrate, fish protein concentrate: process and kinetic considerations. Biotechnol. Bioeng., 15, 181–196.

    Article  CAS  Google Scholar 

  • Bar, R., Gainer, J.L. and Kirwan, D.J. (1986) Immobilization of Acetobacter aceti cells on cellulose ion exchangers. Adsorption isotherms. Biotechnol. Bioeng., 28, 1166–1171.

    Article  CAS  Google Scholar 

  • Black, G.M., Webb, C., Mathews, T.M. and Atkinson, B. (1984) Practical reactor systems for yeast cell immobilization using biomass support particles. Biotechnol Bioeng., 26, 134–141.

    Article  CAS  Google Scholar 

  • Blassberger, D., Freeman, A. and Goldstein, A. (1978) Chemically modified polyesters as supports for enzyme immobilization. Isocyanide, acylhydrazine and aminoaryl derivatives of polyethylene terephthalate. Biotechnol. Bioeng., 20, 309–315.

    Article  CAS  Google Scholar 

  • Blobel, G. and Dobberstein, B. (1975) Transfer of proteins across membranes. I and II. J. Cell Biol., 67, 835–851 and 852-862.

    Article  CAS  Google Scholar 

  • Braun, V. and Schmitz, G. (1980) Excretion of a protease by Serratia marcescens. Arch. Microbiol., 124, 55–61.

    Article  CAS  Google Scholar 

  • Brodelius, P. and Vandamme, E.J. (1987). Immobilized cell systems, in Biotechnology, (ed. J.F. Kennedy), VCS Verlagsgeselleschaft, Germany, Vol. 7a, pp. 405–464.

    Google Scholar 

  • Burt, J.R., Hardy, R. and Whittle, K.L. (eds) (1990) Pelagic Fish. The Resource and its Exploitation, Fishing News (Books) Ltd/Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Cheryan, M., Van Wyk, P.J., Olson, M.F. and Richardson, T. (1975) Continuous coagulation of milk using immobilized enzyme in a fluidized bed reactor. Biotechnol. Bioeng., 17, 585–598.

    Article  CAS  Google Scholar 

  • Chibata, I. and Tosa, T. (1981) Use of immobilized cells. Annu. Rev. Biophys. Bioeng., 10, 192–216.

    Article  Google Scholar 

  • Deeslie, W.D. and Cheryan, M. (1981) A CSTR-hollow fiber system for continuous hydrolysis of proteins. Performance and kinetics. Biotechnol. Bioeng., 23, 2257–2271.

    Article  CAS  Google Scholar 

  • Dervakos G.A. and Webb, C. (1991) On the merits of viable-cell immobilisation. Biotech. Adv., 9, 559–612.

    Article  CAS  Google Scholar 

  • Diluccio, R.C. and Kirwan, D.J. (1984) Effect of dissolved oxygen on nitrogen fixation by A. vinelandii. II. Ionically adsorbed cells. Biotechnol. Bioeng., 26, 87–91.

    Article  CAS  Google Scholar 

  • D’Souza, S.F. and Nadkarni, G.B. (1981) Hen egg white. A novel support for the immobilisation of enzymes. Biotechnol. Bioeng., 23, 431–436.

    Article  Google Scholar 

  • Ehrhardt, H.M. and Rehm, H.J. (1984) Phenol degradation by microorganisms adsorbed on activated carbon. Appl. Microbiol. Biotechnol., 21, 32–36.

    Google Scholar 

  • Eveleigh, D.E. and Montencourt, B.S. (1979) Increasing yields of extracellular enzymes, in Advances in Applied Microbiology, (ed. D. Perlman), Academic Press, New York, pp. 7–35.

    Google Scholar 

  • Foegeding, E.A. (1988) Thermally induced changes in muscle proteins. Food Technol., 42(6), 58–61.

    CAS  Google Scholar 

  • Ghadi, S.V., Warrier, S.B. and Ninjoor, V. (1987) Preparation and properties of fish protein hydrolysate from Dhoma, an under-utilized fish, in Proceedings of the Symposium on Diversification of Post-harvest Technology for Low Cost Fish, Society of Fishery Technologists, India, pp. 231–242.

    Google Scholar 

  • Glenn, A.R. (1976) Production of extracellular proteins by bacteria. Ann. Rev. Microbiol., 30, 41–62.

    Article  CAS  Google Scholar 

  • Grantham, G.J. (1981) Minced fish technology. A review. FAO Fish Technical Paper No. 216. FAO, Rome.

    Google Scholar 

  • Greig, R.I.W. and Estrella D.C. (1988) A study of acceleration of fish sauce production using enzymes, in Food Science and Technology in Industrial Development: Proceedings of the Conference, Indo-Pacific Fishery Commission, Thailand, pp. 275–281.

    Google Scholar 

  • Hale, M.B. (1969) Relative activities of commercially available enzymes in the hydrolysis of fish proteins. Food Technol., 23(1), 107–110.

    CAS  Google Scholar 

  • Haque, Z.U. and Mozaffar, Z. (1992) Casein hydrolysate continuous production using enzyme bioreactors. Food Hydrocolloids, 5, 549–558.

    Article  CAS  Google Scholar 

  • Hartmeier, W. (1986) Immobilized Biocatalysts. An Introduction, Springer-Verlag, New York.

    Google Scholar 

  • Hartley, B.S. (1960) Proteolytic enzymes. Ann. Rev. Biochem., 29, 45–72.

    Article  CAS  Google Scholar 

  • Haecht van, J.L., Bolipombo, M. and Rouxhet, P.B. (1985) Immobilization of Saccharomyces cerevisiae by adhesion. Treatment of the cells by Al ions. Biotechnol. Bioeng., 27, 217–224.

    Article  Google Scholar 

  • Hevia, P., Whitaker, J.R. and Olcott, H.S. (1976) Solubilization of fish protein concentrate with proteolytic enzymes. J. Agri. Food Chem., 24, 383–385.

    Article  CAS  Google Scholar 

  • Hultin, H.O. (1983) Current and potential uses of immobilized enzymes. Food Technol., 37(10), 66–82.

    CAS  Google Scholar 

  • Jacobsen, F. and Rasmussen, O.L. (1984) Energy savings through enzymatic treatment of stickwater in fish meal industry. Process Biochem., 19(5), 65–169.

    Google Scholar 

  • James, D.G. (1986) The prospects for fish for the malnourished. Food and Nutrition (FAO), 12(6), 20–30.

    CAS  Google Scholar 

  • Kearney, L., Upton, M. and McLoughlin, A. (1990) Meat fermentations with immobilized lactic acid bacteria. Appl. Microbiol. Biotechnol., 33, 648–651.

    Article  CAS  Google Scholar 

  • Keil-Dlouhia, V., Murshain, R. and Keil, B. (1976) The induction of collagenase and a neutral protease by their high molecular weight substrates in Achromobacter iophagus. J. Mol. Biol., 107, 293–2397.

    Article  Google Scholar 

  • Kennedy, J.F. (1978) Microbial cells immobilized and hung on solid supports and their applications to fermentation processes. Enzyme Eng., 4, 323–328.

    Article  CAS  Google Scholar 

  • Khan, S.S. and Siddiqui, A.M. (1985) Studies on chemically aggregated pepsin using glutaraldehyde. Biotechnol. Bioeng., 27, 415–419.

    Article  CAS  Google Scholar 

  • Kilara, A. (1985) Enzyme-modified protein food ingredients. Process Biochem., 20(5), 149–158.

    CAS  Google Scholar 

  • Kinumaki, T. (1978) Possibilities for the production and application of liquefied fish protein concentrate in the IPFC area, in Indo-Pacific Fishery Commission: Proceedings on the Symposium on Fish Utilization Technology, Manila, Philippines, 8-17 May, pp. 492–506.

    Google Scholar 

  • Klein, J. and Vorlop, K.-D. (1985) Immobilization techniques — cells, in Comprehensive Biotechnology, (ed. M. Moo-Young), Pergamon Press, New York, Vol. 2, pp. 203–224.

    Google Scholar 

  • Klein, J. and Wagner, F. (1983) Methods for the immobilization of microbial cells. Appl. Biochem. Bioeng., 4, 11–51.

    CAS  Google Scholar 

  • Klibanov, A.M. (1983) Immobilized enzymes and cells as practical catalysts. Science, 219, 722–727.

    Article  CAS  Google Scholar 

  • Lasch, J., Koelsch, R. and Krelschmer, K. (1987) Continuous production of protein hydrolysates in immobilized enzyme reactors. Acta Biol., 7, 227–235.

    Article  CAS  Google Scholar 

  • Lanier, T.C. (1986) Functional properties of surimi. Food Technol., 40(3), 107–114.

    Google Scholar 

  • Lee, C.M. (1986) Surimi manufacturing and fabrication of surimi based products. Food Technol., 40(3), 115–124.

    CAS  Google Scholar 

  • Leuba J.-L. and Widmer, F. (1979) Immobilization of proteinases on chitosan. Biotechnol. Lett., 6, 109–114.

    Article  Google Scholar 

  • Linko, P. and Linko, Y.-Y. (1984) Industrial applications of immobilized cells. CRC Crit. Rev. Biotechnol., 1, 289–338.

    Article  CAS  Google Scholar 

  • Litchfield, C.D. and Prescott, J.M. (1970). Regulation of proteolytic enzyme production by Aeromonas proteolytica 1. Extracellular endopeptidase. Can. J. Microbiol., 16, 17–22.

    Article  CAS  Google Scholar 

  • Loffler, A. (1986) Proteolytic enzymes: sources and applications. Food Technol., 40(1), 63–70.

    Google Scholar 

  • Mackie, I.M. (1982a) General review of fish proteins hydrolysates. Animal Feed Sci. Technol. 7, 113–124.

    Article  CAS  Google Scholar 

  • Mackie, I.M. (1982b) Fish protein hydrolysates. Process Biochem., 17, 26–32.

    CAS  Google Scholar 

  • Mason, R.D., Detar, C.C. and Weetall, H.H. (1975) Protease covalently coupled to porous glass: preparation and characterization. Biotechnol. Bioeng., 17, 1019–1027.

    Article  CAS  Google Scholar 

  • May, B.K. and Elliott, W.H. (1968) Characteristics of extracellular protease formation by Bacillus subtilis. Biochem. Biophys. Acta, 157, 607–615.

    Article  CAS  Google Scholar 

  • Merritt, J.H. (1982) Assessment of the production costs of fish protein hydrolysates. Animal Feed Sci. Technol. 7, 147–151.

    Article  Google Scholar 

  • Monti, J. and Jost, R. (1979) Papain-catalyzed synthesis of methionine-enriched soy plasteins. Average chain lengths of the plastein peptides. J. Agri. Food Chem., 27, 1281–1285.

    Article  CAS  Google Scholar 

  • Morihara, K. (1974) Comparative specificities of microbial proteinases. Adv. Enzymol., 41, 179–243.

    CAS  Google Scholar 

  • Morrissey, M.T. (ed.) (1988) Post Harvest Fishery Losses. Proceedings of International Workshop, The International Center for Marine Resource Development, University of Rhode Island, Kingston, RI.

    Google Scholar 

  • Navarro, J.M. and Durrand, G. (1977) Modification of yeast metabolism by immobilization on to porous glass. Appl. Microbiol. Biotechnol., 4, 243–254.

    CAS  Google Scholar 

  • Nga, B.H. and Lee, Y.K. (eds) (1990) Microbiology Applications In Food Biotechnology, Elsevier, New York.

    Google Scholar 

  • Owens, J.D. and Mendoza, L.S. (1985) Enzymatically hydrolysed and bacterially fermented fishery products. J. Food Technol., 20, 273–293.

    Article  CAS  Google Scholar 

  • Piggott, G.M., Bucone, G.O. and Ostrander, J.G. (1978) Engineering a plant for enzymatic production of supplemental fish protein. J. Food Proc. Preserv., 4, 33–54.

    Article  Google Scholar 

  • Priest, F.G. (1983) Enzyme synthesis by microorganisms, in Microbial Enzymes and Biotechnology, (ed. W.M. Fogarty), Elsevier, London, pp. 319–366.

    Google Scholar 

  • Putro, S. (1989) Surimi prospects in developing countries. Infofish Int., 5, 29–32.

    Google Scholar 

  • Quaglia, G.B. and Orban, E. (1987a) Enzymatic solubilisation of proteins of sardine by commercial proteases. J. Sci. Food Agri., 38, 263–269.

    Article  CAS  Google Scholar 

  • Quaglia, G.B. and Orban, E. (1987b) Influence of degree of hydrolysis on the solubility of protein hydrolysates from sardine. J. Sci. Food Agri., 38, 271–276.

    Article  CAS  Google Scholar 

  • Quereshi, M. and Tamhane, D.V. (1985) Production of mead by immobilized whole cells of Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol., 21, 280–281.

    Google Scholar 

  • Raghunath, M.R. and McCurdy, A.R. (1991) Synthesis of plasteins from fish silage. J. Sci. Food Agri., 54, 655–658.

    Article  CAS  Google Scholar 

  • Rebecca, B.D., Pena-Vera, M.T. and Diaz-Castaneda, M, (1991) Production of fish protein hydrolysates with bacterial proteases. Yield and nutritional value. J. Food Sci., 56, 309–314.

    Article  Google Scholar 

  • Regenstein, J.M. (1986) The potential for minced fish. Food Technol., 40(3), 101–106.

    Google Scholar 

  • Reid, G.C., Woods, D.R. and Rebb, F.T. (1980). Peptone induction of rifampicin insensitive collagenase production by Vibrio alginolyticus. J. Gen. Microbiol., 142, 447–454.

    CAS  Google Scholar 

  • Ritchie, A.H. and Mackie, I.M. (1982) Preparation of fish protein hydrolysates. Animal Feed Sci. Technol., 7, 125–133.

    Article  CAS  Google Scholar 

  • Roy, G. (1992) Bitterness: reduction and inhibition. Trends Food Sci. Technol., 3, 85–91.

    Article  CAS  Google Scholar 

  • Satterlee, L.D. (1981) Proteins for use in foods. Food Technol., 35(6), 53–70.

    CAS  Google Scholar 

  • Scott, C.D. (1987) Immobilized cells. A review of recent literature. Enzyme Microbiol. Technol. 9, 66–73.

    Article  CAS  Google Scholar 

  • Sen, D.P., Sripathy, N.V., Lahiry, N.L. and Sreenivasan, A. (1962) Fish hydrolysates: 1. Rate of hydrolysis of fish flesh with papain. Food Technol., 16(5), 138–141.

    CAS  Google Scholar 

  • Sikorski, Z.E. (1990) Seafood: Resources, Nutritional Composition and Preservation, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Sikorski, Z.E. and Naczk, M. (1981) Modification of technological properties of fish protein concentrates. CRC Crit. Rev. Food Sci. Nutr., 14, 201–230.

    CAS  Google Scholar 

  • Sims, K.A. and Cheryan, M. (1992) Hydrolysis of liquefied corn starch in a membrane reactor. Biotechnol. Bioeng. 39, 960–967.

    Article  CAS  Google Scholar 

  • Tanaka, A. and Nakajima, H. (1990) Application of immobilised growing cells. Adv. Biochem. Eng./Biotechnol., 42, 97–131.

    Article  CAS  Google Scholar 

  • Taylor, M.J. and Richardson, T. (1979) Applications of microbial enzymes in food systems and biotechnology. Adv. Appl. Microbiol., 25, 7–19.

    Article  CAS  Google Scholar 

  • Umeura, I., Takamatsu, S., Sato, T. et al. (1984) Improvement of production of L-aspartic acid using immobilized microbial cells. Appl. Microbiol. Biotechnol., 20, 291–295.

    Article  Google Scholar 

  • Venugopal, V. (1990) Extracellular proteases of contaminant bacteria in fish spoilage. J. Food Prot., 53, 341–350.

    CAS  Google Scholar 

  • Venugopal, V. (1992) Mince from low cost fish species. Trends Food Sci. Technol., 3, 2–5.

    Article  CAS  Google Scholar 

  • Venugopal, V. and Lewis, N.F. (1981) Isolation of proteins from low priced fish. Fleischwirtschaft, 61, 1368–1370.

    Google Scholar 

  • Venugopal, V., Alur, M.D. and Nerkar, D.P. (1989) Solubilization of fish proteins using immobilized microbial cells. Biotechnol. Bioeng., 33, 1098–1103.

    Article  CAS  Google Scholar 

  • Venugopal, V., Ghadi, S.V. and Nair, P.M. (1992) Value added products from low cost fish mince. Asian Food J., 7, 3–12.

    Google Scholar 

  • Venugopal, V., Doke, S.N. and Nair, P.M. (1994) Gelation of shark proteins by weak organic acids. Food Chemistry, in press.

    Google Scholar 

  • Venugopal, V., Martin, A. and Patel, T.R. (1994) Extractability and stability of washed capelin muscle in water. Food Hydrocolloids, in press.

    Google Scholar 

  • Venugopal, V. and Shahidi, F. (1994) Thermostable dispersion from washed muscle of Atlantic mackerel. J. Food. Sci., in press.

    Google Scholar 

  • Wandersman, C., Ando, T. and Bertheau, Y. (1986) Extracullular proteases in Erwinia chrysanthemi. J. Gen. Microbiol., 182, 899–906.

    Google Scholar 

  • Ward, O.P. (1985) Proteolytic enzymes, in Comprehensive Biotechnology, (ed. M. Moo-Young), Pergamon Press, Oxford, Vol. 3, pp. 789–818.

    Google Scholar 

  • Watanabe, M. Shimizu, J. and Arai, S. (1990) Debittering of a tryptic hydrolysate of casein by incubating with ice nucleation-active bacterium Erwinia ananas and its aminopeptidase at low temperature. Agri. Biol. Chem., 54, 3351–3353.

    Article  CAS  Google Scholar 

  • Whooley, M., O’Callaghan, J.A. and McLoughin, A.J. (1983 ) Effect of substrate on the regulation of exoprotease production by Pseudomonas aeruginosa ATCC 10145. J. Gen. Microbiol., 129, 981–988.

    CAS  Google Scholar 

  • Wiegel, J. and Dykatra M. (1984) Clostridium thermocellum adhesion and sporulation while adhered to cellulose and hemicellulose. Appl. Microbiol. Biotechnol., 20, 59–65.

    Article  CAS  Google Scholar 

  • Yanez, E., Ballester, D. and Monckeberg, F. (1976) Enzymatic fish protein hydrolysate. Chemical composition and nutritive value and use as a supplement to cereal protein. J. Food Sci., 41, 1289–1292.

    Article  CAS  Google Scholar 

  • Yu, S.Y. and Tan, L.K. (1990) Acceptability of crackers (‘Kerpok’) with fish protein hydrolysate. Int. J. Food Sci. Technol., 25, 204–208.

    Article  Google Scholar 

  • Ziegler, G.R. and Foegeding, E.A. (1990) The gelation of proteins. Adv. Food Res., 34, 203–298.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Venugopal, V. (1994). Production of fish protein hydrolyzates by microorganisms. In: Martin, A.M. (eds) Fisheries Processing. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5303-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5303-8_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7420-6

  • Online ISBN: 978-1-4615-5303-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics