Skip to main content

Applications

  • Chapter

Part of the book series: Materials Technology Series ((MTEC,volume 5))

Abstract

The FGM concept is applicable to almost all material fields. Examples of a variety of real and potential applications in transport systems, energy conversion systems, cutting tools, machine parts, semiconductors, optics, and biosystems are described in this chapter. Potential applications include those structural and engineering uses that require combinations of incompatible functions such as refractoriness or hardness with toughness, or chemical inertness with toughness. In aerospace and nuclear energy applications, reliability rather than cost is the key issue. But in applications such as cutting tools, high temperature rollers, and engine components, which require wear, heat, mechanical shock, and corrosion resistance; the key issues are the cost/performance ratio and reliability.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sonda, Y. et al. (1993) Carbon/carbon composites coated with SiC/C functionally gradient compositions, in Ceramic Transactions, 34, Proc. of The Second Int’l. Symp. on FGM’92, (eds. J.B. Holt, M. Koizumi, T. Hirai, and Z.A. Munir), American Ceramic Society, Westerville, OH, 125–132.

    Google Scholar 

  2. Sasaki, M. and Hirai, T. (1991) Fabrication and properties of functionally gradient materials, Journal of the Ceramic Society of Japan, 99, 1002–1013.

    CAS  Google Scholar 

  3. Tada, Y. (1995) Space and aerospace vehicle components. Special contribution to this book.

    Google Scholar 

  4. Sohda, Y. et al. (1992) Functionally gradient coated carbon/carbon composites, in Proc. FGM Domestic Symposium (FGM’92 Japan), Oct. 1992, 25–35.

    Google Scholar 

  5. Sato, M. et al. (1995) Development of reaction control thruster for H-II orbiting plane(I), in Proc. The 39 th Domestic Meeting of Space Science and Technology 1995, Osaka, 67–68.

    Google Scholar 

  6. Mendelson, M.I. (1995) Thermal protection systems for high heat flux environments. Special contribution to this book.

    Google Scholar 

  7. Kuroda, Y. et al. (1991) Evaluation tests of ZrO2/Ni, Ceramic Transactions, 34, Proc. of The Second Int’l.. Symp. on FGM’92, (eds. J.B. Holt, M. Koizumi, T. Hirai, and Z.A. Munir), American Ceramic Society, Westerville, OH, 289–296.

    Google Scholar 

  8. Tenny, D.R. et al. (1989) Materials and structures for hypersonic vehicles, NASA Technical Memorandum TM-101501.

    Google Scholar 

  9. Kuroda, M. et al. (1995) Durability and performance tests of OMS subscale engine for the H-II orbiting plane (I), in the Proceedings of The 39 th Domestic Meeting of Space Science and Technology 1995, Osaka, 69–70.

    Google Scholar 

  10. Mouchon, E. and Colomban, Ph. (1996) Microwave absorbent, preparation, mechanical properties and r.f.-microwave conductivity of SiC (and/or mullite) fiber reinforced Nasicon matrix composites, J. Materials Science, 31, 323–34.

    CAS  Google Scholar 

  11. Rickerby, D.S. and Winstone, M.R. (1992) Coatings for gas turbine engines, Materials and Manufacturing Processes, 7(4) 495–526.

    CAS  Google Scholar 

  12. Miller, R.A. et al. (1989) Thermal barrier coatings for gas turbines and diesel engines, NASA Technical Memorandum 102408.

    Google Scholar 

  13. Duvall, D.S. and Ruckle, D.L. (1992) Ceramic thermal barrier coatings for turbine engine components, ASME Paper 82-GT-322.

    Google Scholar 

  14. Strangman, T.E. (1985) Thermal barrier coatings for turbine airfoils, Thin Solid Foils, 127, 93–105.

    CAS  Google Scholar 

  15. Shiembob, L.T. (1982) JT9D Ceramic Outer Air Seal System Refinement Program, Phase II, NASA Contractor Report 167962, PWA-5515–175.

    Google Scholar 

  16. Goward, G.W., Grey, D.A., and Krutenat, R.C. (1994) U.S. Patent No.4 248 940.

    Google Scholar 

  17. Jamarani, F. et al. (1992) Compositionally graded thermal barrier coatings for high temperature aero gas turbine components, Surface and Coatings Technology, 54/55, 58–63.

    Google Scholar 

  18. Schulz, U. et al. (1995) Processing and behavior of chemically graded EB-PVD MCrAlY bond coats, in Proc. of The Third Int’l. Symp. on FGM’94, (eds. B. Aschner and N. Cherradi), Presses Polytechniques et Universitaires Romandes, Lausanne, 441–446.

    Google Scholar 

  19. Leushake, U. et al. (1997) Al2O3-ZrO2 graded thermal barrier coatings by EB-PVD-concept, microstructure and phase stability, in Proc. of The Fourth Int’l. Symp. on FGM’96, (eds. I. Shiota and Y. Miyamoto), Elsevier Science B.V., Amsterdam, 263–268.

    Google Scholar 

  20. Winkler, M.F. and Parker, D.W. (1992) Greener, meaner diesels sport thermal barrier coatings, Advanced Materials & Processes, 12, 18–23.

    Google Scholar 

  21. Mendelson, M.I. and McKechnie, T.N. (1993) Functionally gradient thermal barrier coatings design, in Ceramic Transactions, 34, Proc. of The Second Int’l. Symp. on FGM’92, (eds. J.B. Holt, M. Koizumi, T. Hirai, and Z.A. Munir), Am. Cer. Soc., Westerville, OH, 417–424.

    Google Scholar 

  22. Yonushonis, T.M. (1991) Thick thermal barrier coatings for diesel components, Report CR-187111, NASA LeRC Contract DEN3–331.

    Google Scholar 

  23. Assanis, D. et al. (1990) Investigation of the effects of thin ceramic coatings on diesel engine performance and exhaust emissions, in Proc. Coatings for Advanced Heat Engines Workshop, Castine, Maine.

    Google Scholar 

  24. Beardsley, M.B. (1997) Functionally graded thermal barrier coatings for diesel engines, Presented at MRS meeting 1997, Boston, MA.

    Google Scholar 

  25. Yonushonis, T.M. (1995) Overview of thermal barrier coatings in diesel engines, in Proc. Thermal Barrier Coating Workshop, Cleveland, OH, NASA Conference Publication 3312, 113–126.

    Google Scholar 

  26. Beardsley, M.B. (1995) Thick thermal barrier coatings for diesel in Proc. Thermal Barrier Coating Workshop, Cleveland, OH, NASA Conference Publication 3312, 203–216.

    Google Scholar 

  27. Parks, W.P. et al. (1998) The advanced turbine systems program in the U.S.A., presented COST/98, Liège, Belgium.

    Google Scholar 

  28. Austin, C.M. and Kelly, T.J. (1993) Development and implementation status of cast __titanium aluminide, in Structural Intermetallics, (ed. R. Darolia et al.), TMS, Warrendale PA, 143–50.

    Google Scholar 

  29. Rösler, J. and Tönnes, C. (1995) Processing of TiAl components with gradient microstructures, in Proc. of The Third Ml Symp. on Structural and Functional Gradient Materials, (eds. B. Ilschner and N. Cherradi), Presses Polytechniques et Universitaires Romandes, Lausanne, 41–46.

    Google Scholar 

  30. Dröchel, M., Oberacker, R., and Hoffmann, M.J. (1998) Processing of silicon carbide evaporators with porosity gradients by pressure filtration, in Functionally Graded Materials 1998, ed.W.A. Kaysser, Materials Science Forum, vols. 308–311, Trans Tech Publications Ltd., Zürich, 814–819.

    Google Scholar 

  31. Dröchel, M. et al. (1998) Tailored porosity gradient by FEM calculations for silicon carbide evaporator tubes, in Functionally Graded Materials 1998, ed.W.A. Kaysser, Materials Science Forum, vols. 308–311, Trans Tech Publications Ltd., Zürich, 820–825.

    Google Scholar 

  32. Kude, Y. and Sonda, Y. (1997) Thermal management of carbon-carbon composites by functionally graded fiber arrangement technique, in Proc. of The Fourth Int’l. Symp. on FGM’96, (eds. I. Shiota and Y. Miyamoto), Elsevier Science B.V., Amsterdam, 239–244.

    Google Scholar 

  33. Koizumi, M. (1993) The concept of FGM, in Ceramic Transactions, 34, Proc. of The Second Int’l. Symp. on FGM’92, (eds. J.B. Holt, M. Koizumi, T. Hirai, and Z.A. Munir), American Ceramic Society, Westerville, OH, 34, 3–10.

    Google Scholar 

  34. Eguchi, K., Hoshino, T., and Fujihara, T. (1995) Performance analysis of FGM-based direct energy conversion system for space power applications, in Proc. of The Third Int’l. Symp. on Structural and Functional Gradient Materials, (eds. B. Ilschner and N. Cherradi), Presses Polytechniques et Universitaires Romandes, Lausanne, 619–625.

    Google Scholar 

  35. Niino, M. and Koizumi, M. (1994) Projected research on high-efficiency energy conversion materials, in Proc. of The Third Int’l. Symp. on Structural and Functional Gradient Materials, (eds. B. Ilschner and N. Cherradi), Presses Polytechniques et Universitaires Romandes, Lausanne, 601–605.

    Google Scholar 

  36. Miyamoto, Y., Niino, M., and Koizumi, M. (1997) FGM research programs in Japan from structural to functional uses, in Proc. of The Fourth Int’l. Symp. on FGM’96, (eds. I. Shiota and Y. Miyamoto), Elsevier Science B.V., Amsterdam, 1–8.

    Google Scholar 

  37. Kato, T. et al. (1997) Development of efficient thermionic energy converter, , in Proc. of The Fourth Int’l. Symp. on FGM’96, (eds. I. Shiota and Y. Miyamoto), Elsevier Science B.V., Amsterdam, 661–666.

    Google Scholar 

  38. Katoh, M., Fukuda, R., and Igarashi, T. (1997) Thermionic properties and thermal stability of emitter with a (0001) oriented rhenium layer and graded structure, , in Proc. of The Fourth Int’l. Symp. on FGM’96, (eds. I. Shiota and Y. Miyamoto), Elsevier Science B.V., Amsterdam, 655–660.

    Google Scholar 

  39. Fukuda, R., Kasuga, Y., and Katoh, K. (1997) Development of refractory metal oxide collector materials and their thermionic converter performance, , in Proc. of The Fourth Int’l. Symp. on FGM’96, (eds. I. Shiota and Y. Miyamoto), Elsevier Science B.V., Amsterdam, 647–652.

    Google Scholar 

  40. Noguchi, T., Takahashi, K., and Masuda, T. (1997) Trial manufacture of functionally graded Si-Ge thermoelectric material, , in Proc. of The Fourth Int’l. Symp. on FGM’96, (eds. I. Shiota and Y. Miyamoto), Elsevier Science B.V., Amsterdam, 593–598.

    Google Scholar 

  41. Imai, Y. et al. (1997) Joint of n-type PbTe with different carrier concentration and the thermoelectric properties, , in Proc. of The Fourth Int’l. Symp. on FGM’96, (eds. I. Shiota and Y. Miyamoto), Elsevier Science B.V., Amsterdam, 617–622.

    Google Scholar 

  42. Abe, N. et al. (1997) Effect of dopants on thermoelectric properties and anisotropics for unidirectionally solidified n-Bi2Te3, , in Proc. of The Fourth Int’l. Symp. on FGM’96, (eds. I. Shiota and Y. Miyamoto), Elsevier Science B.V., Amsterdam, 551–556.

    Google Scholar 

  43. Lin, J.S. et al. (1998) One-step sintering of thermoelectric conversion units in the W/TiB2/SiGe and W/MoSi2/SiGe systems, in Functionally Graded Materials 1998, ed.W.A. Kaysser, Materials Science Forum, vols. 308–311, Trans Tech Publications Ltd., Zürich, 760–765.

    Google Scholar 

  44. Koyanagi, A. and Hayashibara, M. (1994) Evaluation of conversion efficiency of tandem thermoelectric devices, in Proc. of The Third Int’l. Symp. on Structural and Functional Gradient Materials, (eds. B. Ilschner and N. Cherradi), Presses Polytechniques et Universitaires Romandes, Lausanne, 607–612.

    Google Scholar 

  45. Teraki, J. and Hirano, T. (1997) A design procedure of functionally graded thermoelectric materials, in Proc. of The Fourth Int’l. Symp. on FGM’96, (eds. I. Shiota and Y. Miyamoto), Elsevier Science B.V., Amsterdam, 483–488.

    Google Scholar 

  46. Nishio, Y. and Hirano, T. (1997) Transport properties of multi-barrier systems, in Proc. of The Fourth Int’l. Symp. on FGM’96, (eds. I. Shiota and Y. Miyamoto), Elsevier Science B.V., Amsterdam, 489–494.

    Google Scholar 

  47. Yoshino, J. (1997) Theoretical estimation of thermoelectric figure of merit in sintered materials and proposal of grain-size-graded structures, in Proc. of The Fourth Int’l. Symp. on FGM’96, (eds. I. Shiota and Y. Miyamoto), Elsevier Science B.V., Amsterdam, 495–500.

    Google Scholar 

  48. Anatychuk, I.Y. and Victor, L.N. (1997) Computer design of thermoelectric functionally graded materials, in Proc. of The Fourth Int’l. Symp. on FGM’96, (eds. I. Shiota and Y. Miyamoto), Elsevier Science B.V., Amsterdam, 501–508.

    Google Scholar 

  49. Ohsugi, I.J. et al. (1997) Anisotropic carrier scattering in n-type Bi2Te2,85Se0,15 single crystal doped with HgBr2, in Proc. of The Fourth Int’l. Symp. on FGM’96, (eds. I. Shiota and Y. Miyamoto), Elsevier Science B.V., Amsterdam, 509–514.

    Google Scholar 

  50. Seki, M. et al. (1991) Thermal shock tests on various materials of plasma facing components for FER/ITER, Fusion Engineering and Design, 15, 59–74.

    CAS  Google Scholar 

  51. Hirooka, Y. et al. (1992) Evaluation of tungsten as plasma-facing materials for steady state magnetic fusion devices, Journal of Nuclear Materials, 196/98, 149–158

    Google Scholar 

  52. Itoh, Y. and Kashiwaya, H. (1992) Residual stress characteristics of functionally gradient materials, J. Cer. Soc. Japan. 100, 476–481.

    CAS  Google Scholar 

  53. Takahashi, T. et al. (1993) Fabrication of tungsten/copper graded material, in Proc. 13th International Plansee Seminar, Vol.4, 17–28

    Google Scholar 

  54. Suzuki, S. et al. (1992) Thermal cycling experiment of monoblock diverter modules for fusion experimental reactors, Fusion Technology, 21, 1858–1862.

    CAS  Google Scholar 

  55. Itoh, Y., Takahashi, M., and Takano, H. (1996) Design of tungsten/copper graded composite for high heat flux components, Fusion Engineering and Design, 31, 279–289.

    CAS  Google Scholar 

  56. Sasaki, K. and Gaukler, L.J. (1995) Functional gradient electrode/electrolyte for solid oxide fuel cells: gradient materials design for an electrochemical energy conversion device, in Proc. of The Third Int’l. Symp. on Structural and Functional Gradient Materials, (eds. B. Ilschner and N. Cherradi), Presses Polytechniques et Universitaires Romandes, Lausanne, 651–656.

    Google Scholar 

  57. Barthel, K. and Rambert, S. (1998) Vacuum plasma spraying and performance of graded LaSm-YSZ composite cathodes as SOFC-component, in Functionally Graded Materials 1998, ed.W.A. Kaysser, Materials Science Forum, vols. 308–311, Trans Tech Publications Ltd., Zürich, 800–805.

    Google Scholar 

  58. Tsoga, A. et al. (1998) Microstructure and interdiffusion phenomena in YSZ-CGO composite electrolyte, to be published in Proc. FGM’98. in Functionally Graded Materials 1998, ed.W.A. Kaysser, Materials Science Forum, vols. 308–311, Trans Tech Publications Ltd., Zürich, 794–799.

    Google Scholar 

  59. Gerk, Ch. and Willert-Porada, M. (1998) Development of graded composite-electrodes for the SOFC, to be published in Proc. FGM’98. in Functionally Graded Materials 1998, ed.W.A. Kaysser, Materials Science Forum, vols. 308–311, Trans Tech Publications Ltd., Zürich, 806–811.

    Google Scholar 

  60. Flesch, U. et al. (1998) Improved catalytic properties of solid oxide fuel cells (SOFC) anodes by coated Ni/YSZ, in Functionally Graded Materials 1998, ed.W.A. Kaysser, Materials Science Forum, vols. 308–311, Trans Tech Publications Ltd., Zürich, 788–793.

    Google Scholar 

  61. Schmidt, H. et al. (1995) Interfacial functional layers between metallic and ceramic components in the high temperature solid oxide fuel cell, in Proc. of The Third Int’l. Symp. on Structural and Functional Gradient Materials, (eds. B. Ilschner and N. Cherradi), Presses Polytechniques et Universitaires Romandes, Lausanne, 663.

    Google Scholar 

  62. Taguchi, I. (1988) History and chemistry of iron (in Japanese), Shokabou, Tokyo.

    Google Scholar 

  63. U.S. Patent (1994) Number 4610931, March 8.

    Google Scholar 

  64. Richter, V. (1995) Fabrication and properties of gradient hard metals, in Proc. of The Third Int’l. Symp. on Structural and Functional Gradient Materials, (eds. B. Ilschner and N. Cherradi), Presses Polytechniques et Universitaires Romandes, Lausanne, 587–592.

    Google Scholar 

  65. Tobioka, M. et al. (1989) ACE COAT AC 15 aluminum oxide coated cutting tool for highly efficient machining, in Technical Report “Sumitomodenki,” 135, 190–196.

    Google Scholar 

  66. U.S. Patent (1988) Number 4911989, April 12.

    Google Scholar 

  67. Miyamoto, Y. et al. (1995) Development of symmetric gradient structures for hyperfunctional materials by SHS/HIP compaction, in Proc. 8 th CIMTEC, Intelligent Materials and Systems, Florence, 87–98.

    Google Scholar 

  68. Japanese Patent (1995) Application no. Hei7–179978

    Google Scholar 

  69. Tsuda, A. et al. (1995) Development of functionally gradient sintered hard materials, in Technical Report, “Sumitomodenki,” 147, 71–76.

    Google Scholar 

  70. Cline, C.F. (1995) Preparation and properties of gradient TiC cermet cutting tools, in Proc. of The Third Int’l. Symp. on Structural and Functional Gradient Materials, (eds. B. Ilschner and N. Cherradi), Presses Polytechniques et Universitaires Romandes, Lausanne, 595–595.

    Google Scholar 

  71. U.S. Patent (1973) Number 3, 743, 569, July.

    Google Scholar 

  72. Li, F. et al. (1994) Design and fabrication of diamond tools with ceramic shank using the concept of functionally gradient materials, in Proc. PM’94-Powder Metallurgy World Congress, Paris, 1, 553–556.

    Google Scholar 

  73. Bergamann, E. (1995) Functionally and compositionally graded cutting edges produced with PVD methods, in Proc. of The Third Int’l. Symp. on Structural and Functional Gradient Materials, (eds. B. Ilschner and N. Cherradi), Presses Polytechniques et Universitaires Romandes, Lausanne, 597.

    Google Scholar 

  74. Ikegaya, A (1996) Microstructure and mechanical properties of functionally graded cemented carbide, sinter-bonded on steel, in Plansee Proceedings, 14 th Int’l Plansee Seminar’97, Reutte, Austria, 2, 525–539.

    Google Scholar 

  75. Linear motor driven shaver, in NIKKE Mechanical, No.469, December 11, 1995, 94–97.

    Google Scholar 

  76. Kaysser, W.A. and Ilschner, B. (1995) FGM research activities in Europe, MRS Bull., 20(1)22–6.

    CAS  Google Scholar 

  77. Heikinheimo, L., Siren, M., and Gasik, M. (1997) Al2O3 to Ni-superalloy diffusion bonded FG-joints for high temperature applications, in Proc. of The Fourth Int’l. Symp. on FGM’96, Tsukuba, Japan, (Eds. I. Shiota and Y. Miyamoto), Elsevier Science Publ., 313–8.

    Google Scholar 

  78. Salmi, J. (1996) Graded materials, 2nd Seminar TEKES Technology Program of Material Applications, Espoo, Finland.

    Google Scholar 

  79. Nuutinen, S. and Heikinheimo, L. (1997) The coating-braze combinations in ceramic-metal joints (FG-joints), The State Research Center of Finland (VTT), Report VALB215, Espoo, Finland.

    Google Scholar 

  80. Gasik, M. (1995) Principles of functional gradient materials and their processing by powder metallurgy, Acta Polytechnica Scand., Ch. 226.

    Google Scholar 

  81. Henning, W., Melzer, C., and Mielke, S. (1992) Keramische Gradientenwerkstoffe für Komponenten in Vernrennungsmotoren (Ceramic gradient materials for components in passenger cars), Metall., 46 (5) 436–9.

    CAS  Google Scholar 

  82. Joensson, M. and Kieback, M. (1995) Highly porous sintered parts with a pore size gradient made by centrifugal powder metallurgy, in Proc. of The Third Int’l. Symp. on Structural and Functional Gradient Materials, (eds. B. Ilschner and N. Cherradi), Presses Polytechniques et Universitaires Romandes, Lausanne, 33–9.

    Google Scholar 

  83. Hong, C.-W., Müller, F., and Greil, P. (1997) Fabrication of pore-gradient membranes via centrifugal casting in Proc. of The Fourth Int’l. Symp. on FGM’96, Tsukuba, Japan, (Eds. I. Shiota and Y. Miyamoto), Elsevier Science Publ., 173–8.

    Google Scholar 

  84. Shapovalov, V.I. (1994) Porous metals, MRS Bull. 19(4) 24–8.

    CAS  Google Scholar 

  85. Piekarczyk, J. and Jeremenko, M.D. (1992) Properties of anisotropical metal materials — GASARS, Inzyn, Mater., Poland, 12 (2–3) 64–8.

    Google Scholar 

  86. Shapovalov, V.I., Eryomenko N.D. (1989) The structure and properties of composite porous metals with monolithic framework for slide bearing units, in Advance P/Mand Ceramic Materials, Proc. 2nd EAMI Int. Conf., Jyvaskyla, Finland, 10.

    Google Scholar 

  87. Popov, A., Gasik, M., and Freedman, V. (1994) Nickel PM superalloys with isotropic and gradient carbide reinforcement, J. Mater. Synth. Proc. 2, (3) 143–50.

    CAS  Google Scholar 

  88. Kroemer, H. (1957) Quasi-electric and quasi-magnetic fields in nonuniform semiconductors, RCA Review, 18 (3) 332–342.

    Google Scholar 

  89. Tersoff, J. (1984) Theory of semiconductor heterojunctions, The role of quantum dipoles, Phys. Rev. Let., 30 (8) 4874–4877.

    CAS  Google Scholar 

  90. Hutchby, J.A. and Fudurich, R.L. (1976) Theoretical analysis of AlxGa1-xAs-GaAs graded band-gap solar cell, J App. Phys., 47 (7) 3140–3151.

    CAS  Google Scholar 

  91. Tsang, W.T. (1981) A graded-index waveguide separate-confinement laser with very low threshold and a narrow Gaussian beam, App. Phys. Let. 39 (2) 134–137.

    CAS  Google Scholar 

  92. Koike, Y. (1992) Graded index materials and components, in Polymers for Lightwave and Integrated Optics, (ed. L.A. Hornak), Marcel Dekker, Inc., New York, 71–104, Special contribution to this book.

    Google Scholar 

  93. Born, M. and Wolf, E. (1970) Principles of Optics, Pergamon Press, London.

    Google Scholar 

  94. French, W.G. et al. (1974) Optical waveguides with very low losses, Bell Syst. Tech. J., 53, 951–954.

    Google Scholar 

  95. Chida, K. et al. (1979) Simultaneous dehydration with consolidation for V.A.D. method, Electron. Lett., 15, 835–836.

    CAS  Google Scholar 

  96. Koizumi, K. et al. (1974) New light-focusing fibers made by a continuous process, Appl. Opt., 13, 255–259.

    CAS  Google Scholar 

  97. Ohtsuka, Y., Koike, Y., and Yamazaki, H. (1981) Studies on the light-focusing plastic rod 6: The photocopolymer rod of methyl methacrylate with vinyl benzoate, Appl. Opt., 20, 280–285.

    CAS  Google Scholar 

  98. Emsile, C. (1988) Review polymer optical fibers, J. Mater. Sci., 23, 2281–2293.

    Google Scholar 

  99. Bobyn, J.D. et al. (1980) The optimum pore size for the fixation of porous-surfaced metal implants by the ingrowth bone, Clin. Orthop., 150, 263–270.

    Google Scholar 

  100. Cameron, H.U., Macnab, I., and Pilliar, R.M. (1978) A porous metal system for joint replacement surgery, Int. J. Artificial Organs 1, 104–109.

    CAS  Google Scholar 

  101. Ducheyne, P. et al. (1980) Effect of hydroxyapatite impregnation on skeletal bonding of porous coated implants, J. Biomed. Mater. Res., 14, 225–237.

    CAS  Google Scholar 

  102. Galante, H. et al. (1971) Sintered fiber metal composites as a basis for attachment of implants to bone, J. Bone Joint Surg., 53A, 101–114.

    Google Scholar 

  103. Hench, L.L. et al. (1971) Bonding mechanisms at the interface of ceramic prosthetic materials, J. Biomed., Mater. Res. Symp., 2, 117–141.

    Google Scholar 

  104. Oonishi, H. et al. (1986) Comparisons of biological fixation to the bone of titanium coated with hydroxyapatite and with hydroxyapatite reinforced with alumina, Orthop. Ceramic Implants, Japan, 6, 73–80.

    Google Scholar 

  105. Oonishi, H. et al. (1989) The effect of hydroxyapatite coating on bone growth into porous titanium alloy implants, J. Bone Joint Surg., 718, 213–216.

    Google Scholar 

  106. Oonishi, H. (1990) Mechanical and chemical bonding of artificial joints, Clin. Mater., 5, 217–233.

    CAS  Google Scholar 

  107. Pilliar, R.M. (1983) Powder metal made orthopaedic implants with porous surface for fixation by tissue ingrowth, Clin. Orthop., 176, 42–51.

    CAS  Google Scholar 

  108. Oonishi, H. (1991) Orthopedic applications of hydroxyapatite, Biomaterials, 12, March, 171–178.

    Google Scholar 

  109. Watari, F. et al. (1995) Functionally graded dental implant composed of titanium and hydroxyapatite, in Proc. of The Third’ lnt’l. Symp. on Structural and Functional Gradient Materials, (eds. B. Ilschner and N. Cherradi), Presses Polytechniques et Universitaires Romandes, Lausanne, 703–708.

    Google Scholar 

  110. Watari, F. et al. (1997) Elemental mapping of functionally graded dental implant in biocompatibility test, in Proc. of The Fourth Int’l. Symp. on FGM’96, (eds. I. Shiota and Y. Miyamoto), Elsevier, 703–708.

    Google Scholar 

  111. Goodman, S.B. et al. (1990) The histological effects of the implantation of different sizes of polyethylene particles in the rabbit tibia. J. Biomed. Mater. Res., 24, 517–524.

    CAS  Google Scholar 

  112. Mira, J.M. et al. (1887) Ion implantation of surgical Ti-6Al-4V for improved resistance to wear-accelerated corrosion, J. Biomed. Mater. Res., 21, 355–336.

    Google Scholar 

  113. Buchanan, R.A., Rigner Jr., E.D., and Williams, J.M. (1887) Ion implantation of surgical Ti-6Al-4V for improved resistance to wear-accelerated corrosion, J. Biomed. Mater. Res., 21, 355–366.

    Google Scholar 

  114. Blumenthal, N.C. and Cosma, V. (1989) Inhibition of apatite formation by titanium and vanadium ions, J. Biomed. Mater. Res., 23 A1, 13–22.

    Google Scholar 

  115. Blumenthal, N.C. and Posner, A.S. (1984) In vitro model of aluminum-induced osteomalacia, inhibition of hydroxyapatite formation and growth, Calcif. Tiss. Int., 36, 439–441.

    CAS  Google Scholar 

  116. Kotoura, K. et al. (1987) Cytotoxicity of metallic materials, Proc. of 9 th Meeting of Jap. Soc. for Biomaterials, 67.

    Google Scholar 

  117. Browning, E. (1969) Toxicity of industrial metals, Butterworth, London, 341.

    Google Scholar 

  118. Tateishi, T. et al. (1990) R&D of the nitrided titanium alloy for artificial joints, in Bioceramies, Vol. 2. Proc. of the 2 nd International Symp. on Ceram. in Med., 193–197.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A., Ford, R.G. (1999). Applications. In: Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A., Ford, R.G. (eds) Functionally Graded Materials. Materials Technology Series, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5301-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5301-4_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-60760-8

  • Online ISBN: 978-1-4615-5301-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics