Skip to main content

Processing and Fabrication

  • Chapter
Functionally Graded Materials

Part of the book series: Materials Technology Series ((MTEC,volume 5))

Abstract

Since the mid-1980s the processing of FGM materials and structures has become of increasing academic interest. This is reflected in the considerable number of papers that have been published on specific processing routes. During the first Japanese FGM program (1987 to 1991) processing methods were developed for FGM parts to be used as high temperature components of a hypersonic space plane [1, 2, 3]. These early methods included powder metallurgy, physical and chemical vapor deposition, plasma spraying, self-propagating high temperature synthesis (SHS), and galvanoforming (see Figure 6.1). Since 1991, many variations of the initially used methods as well as a considerable number of new processing routes have been developed. Today, the spectrum of processing options ranges from methods already established before FGMs became a well-defined subject, such as processing similar to the case-hardening of steel, to more recently developed methods, such as solid freeform fabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Koizumi, M. (1993) The Concept of FGM in Proc. of The Second Intā€™l Symp. on FGMā€™92, (eds. J.B. Holt, M. Koizumi, T. Hirai, and Z.A. Munir), Vol. 34 Ceramic Transactions, American Ceramic Society, Westerville OH, 3ā€“10.

    Google ScholarĀ 

  2. Miyamoto, Y., Niino, M., and Koizumi, M. (1997) FGM research programs in Japan, from structural to functional uses, in Proc. of The Fourth Intā€™l. Symp. on FGMā€™96, (eds. I. Shiota and Y. Miyamoto), Elsevier Science B.V., Amsterdam, 1ā€“8.

    Google ScholarĀ 

  3. Ford, R.G. and Stangle, G.C. (1993) in High Temperature Ceramic Matrix Composites, Proc 6th EACM-HTCMC, 20ā€“24 Sept 1993, Bordeaux, (eds. R. Naslain, J. Lamon, and D. Doumeingts), Woodhead Publ. Ltd., 795ā€“811.

    Google ScholarĀ 

  4. Mortensen, A. and Suresh, S. (1995) Functionally graded metals and metal, ceramic composites, Part 1 Processing, International Materials Reviews, 40 (6), 239ā€“65.

    CASĀ  Google ScholarĀ 

  5. Hirai, T. (1996) Functional Gradient Materials in Processing of Ceramics, Part 2, (ed. R.J. Brook), VCH Verlagsgesellschaft, Weinheim, 17B, 293ā€“341.

    Google ScholarĀ 

  6. Hirai, T. (1996) Functional Gradient Materials in Materials Science and Technology, (eds. R. W. Cahn, P. Haasen, and E.J. Kramer), VCH Verlagsgesellschaft, Weinheim, 17B, 293ā€“341.

    Google ScholarĀ 

  7. Neubrand, A. and Rƶdel, J. (1997) Gradient Materials, An Overview of a Novel Concept, Zeitschrift fĆ¼r Metallkunde, 88 (5), 358ā€“71.

    CASĀ  Google ScholarĀ 

  8. Rabin, B.H. and Heaps, RJ. (1993) Powder processing of Ni-Al2O3 FGM, in Functionally Gradient Materials, Ceramic Transactions, Am. Ceram. Soc., 173ā€“80.

    Google ScholarĀ 

  9. Watanabe, R. and Kawasaki, A. (1991) Mechanics and mechanism of damage, in Composites and Multi-Materials, (ed. D. Baptiste), Mechanical Engineering Publications Ltd., London, 285.

    Google ScholarĀ 

  10. Kawasaki, A. et al. (1990) Fabrication of sintered functionally gradient material by powder spray forming process, Journal of Japanese Society for Powders and Powder Metallurgy, 37, 922ā€“28.

    ArticleĀ  CASĀ  Google ScholarĀ 

  11. Tamura, M. (1995) Scale up of FGM processing by powder metallurgy (private communication).

    Google ScholarĀ 

  12. Scherer, G.W. (1987) Sintering with rigid inclusions, J Am. Ceram. Soc., 70, 719ā€“25.

    ArticleĀ  CASĀ  Google ScholarĀ 

  13. Ilschner, B. (1996) Special contribution to this book.

    Google ScholarĀ 

  14. Miller, D.P., Lannutti, J.J., and Yanecy, R.N. (1992) Functionally gradient NiAl/Al2O3 structures in Ceram. Eng. Sci. Proc- 16th Ann. Conf. On Composites and Advanced Ceramic Materials, (ed. M. Mendelson), American Ceramic Society, Westerville, 13, 365ā€“73.

    Google ScholarĀ 

  15. Miller, D.P., Lannutti, J.J., and Nƶbe, R.D. (1993) Fabrication and properties of functionally graded NiAl/Al2O3 composites, J. Materials Research, 8(8), 2004ā€“13.

    ArticleĀ  CASĀ  Google ScholarĀ 

  16. Lannutti, J.J. (1994) Functionally graded materials, properties, potential and design guidelines, Composites Engineering, 4B(1), 81ā€“94.

    ArticleĀ  Google ScholarĀ 

  17. Delfosse, D. (1990) PhD. thesis No.868, EPF Lausanne.

    Google ScholarĀ 

  18. Joensson, M. and Kieback, M. (1994) Highly porous sintered parts with a pore size gradients made by centrifugal powder metallurgy, in Proc. of The Third Intā€™l, Symp. on Structural and Functional Gradient Materials, (eds. B. Ilschner and N. Cherradi), Presses Polytechniques et Universitaires Romandes, Lausanne, 33ā€“39.

    Google ScholarĀ 

  19. Joensson, M., Birth, U., and Kieback, M. (1997) Gradient components with a high Melting point difference, in Proc. of The Fourth Intā€™l Symp. on FGMā€™96, (eds. I. Shiota and Y. Miyamoto), Elsevier Science B.V., Amsterdam, 167ā€“72.

    Google ScholarĀ 

  20. Hong, C-W., MĆ¼ller, F., and Greil, P. (1997) Fabrication of pore-gradient membranes via centrifugal casting, in Proc. of The Fourth Intā€™l Symp. on FGMā€™96, (eds. I. Shiota and Y. Miyamoto), Elsevier Science B.V., Amsterdam, 173ā€“78.

    Google ScholarĀ 

  21. Hong, C-W. (1997) Computer aided process design for forming of pore-gradient membranes, in Proc. of The Fourth Intā€™l Symp. on FGMā€™96, (eds. I. Shiota and Y. Miyamoto), Elsevier Science B.V., Amsterdam, 29ā€“34.

    Google ScholarĀ 

  22. Marple, B.R. and Tuffe, S. (1997) Graded casting for producing smoothly varying gradients in materials, in Proc. of The Fourth Intā€™l Symp. on FGMā€™96, (eds. I. Shiota and Y. Miyamoto), Elsevier Science B.V., Amsterdam, 159ā€“66.

    Google ScholarĀ 

  23. Marple, B.R. and Boulanger, J. (1996) Slip casting process and apparatus for producing graded materials, U.S. Patent No.5, 498, 383.

    Google ScholarĀ 

  24. Tuffe, S. and Marple, B.R. (1995) Graded casting, process control for producing tailored profiles, J. Am. Ceram. Soc., 78(12), 3297ā€“303.

    ArticleĀ  CASĀ  Google ScholarĀ 

  25. Chu, J. et al. (1993) Slip casting of continuous functionally gradient material, J. Ceram. Soc. Jpn., 101(7), 818ā€“20.

    Google ScholarĀ 

  26. Marple, B.R. and Green, D.J. (1989) Mullite/alumina particulate composites by infiltration processing, J. Am. Ceram. Soc., 72(11), 2043ā€“48.

    ArticleĀ  CASĀ  Google ScholarĀ 

  27. Lange, F.F. and Hirlinger, M.M. (1984) Hindrance of grain growth in alumina by zirconia Inclusions, J. Am. Ceram. Soc., 67(3), 164ā€“68.

    ArticleĀ  CASĀ  Google ScholarĀ 

  28. Marple, B.R. and Green, D.J. (1993) Graded compositions and microstructures by infiltration processing, J. Mater. Sci., 28, 4637ā€“43.

    ArticleĀ  CASĀ  Google ScholarĀ 

  29. Steinlage, G.A. et al. (1996) Centrifugal slip casting of components, Bull. Am. Ceram. Soc., 75, 93ā€“94.

    Google ScholarĀ 

  30. Kude, Y. and Sohda, Y. (1997) Thermal management of carbon-carbon composites by functionally graded fiber arrangement technique, in Proc. of The Fourth Intā€™l. Symp. on FGMā€™96, (eds. I. Shiota and Y. Miyamoto), Elsevier Science B.V., Amsterdam, 239ā€“44.

    Google ScholarĀ 

  31. Takemuma, M. et al. (1990) Mechanical and thermal properties of FGM fabricated by thin sheet lamination method, in Proc. of the First Intā€™l. Symp. on FGMā€™90, (eds. M. Yamanouchi, M. Koizumi, T. Hirai, and I. Shiota), The Society of Non-traditional Technology, Tokyo, 97ā€“100.

    Google ScholarĀ 

  32. Watanabe, R. (1995) Powder processing of functionally gradient materials, MRS Bulletin, 20(1), 32ā€“34.

    CASĀ  Google ScholarĀ 

  33. Watanabe, R. and Kawasaki, A. (1991) Design, fabrication and evaluation of functionally gradient material for high temperature use, in Mechanics and Mechanisms of Damage in Composites and Multi-Materials, (ed. D. Baptiste), Mechanical Engineering Publications Ltd., London, 285ā€“299.

    Google ScholarĀ 

  34. Kawasaki, A, Li, J.F., and Matsubara, T. (1994) Fabrication of thermal barrier type of SiC-AlN/Mo FGM by hot isostatic pressing and their thermomechanical performance, in Proc. of the Third Intā€™l. Symp. on Structural and Functional Gradient Materials, (eds. B. Ilschner and N. Cherradi), Presses Polytechniques et Universitaires Romandes, Lausanne, 433ā€“439.

    Google ScholarĀ 

  35. Cherradi, N., Moeckli, P., and Dollmeier, K. (1994) residual stress in CrNi/ZrO2 graded materials numerical modelling and X-ray measurements, in Proc. of the Third Intā€™l. Symp. on Structural and Functional Gradient Materials, (eds. B. Ilschner and N. Cherradi), Presses Polytechniques et Universitaires Romandes, Lausanne, 253ā€“258.

    Google ScholarĀ 

  36. Cherradi, N., Desmonts, N., and Kawasaki, A. (1994) WC-Co graded materials, heat flux measurements and estimation, in Proc. of the Third Intā€™l. Symp. on Structural and Functional Gradient Materials, (eds. B. Ilschner and N. Cherradi), Presses Polytechniques et Universitaires Romandes, Lausanne, 581ā€“586.

    Google ScholarĀ 

  37. Takemura, M. et al. (1990) Mechanical and thermal properties of FGM fabricated by thin sheet lamination method, in Proc. of The First International Symposium on FGMā€™90, Sendai (eds. M. Yamanouchi, M. Koizumi, T. Hirai, and I. Shiota), Functionally Gradient Materials Forum, 97ā€“100.

    Google ScholarĀ 

  38. Yuan, R.Z. et al. (1993) Design and fabrication of a MgO/Ni functionally gradient material, J. Materials Synthesis & Processing, 1, 171ā€“179.

    CASĀ  Google ScholarĀ 

  39. Zhang, L.M. et al. (1994) Preparation of TiC/Ni3Al FGMs, sintering and structure, in Proc. of the Third Intā€™l Symp. on Structural and Functional Gradient Materials, (eds. B. Ilschner and N. Cherradi), Presses Polytechniques et Universitaires Romandes, Lausanne, 59ā€“64.

    Google ScholarĀ 

  40. Yuki, M. et al. (1990) Temperature gradient sintering of PSZ/Mo functionally gradient material by laser beam heating, in Proc. of The First Intā€™l. Symp. on FGMā€™90, Sendai (eds. M. Yamanouchi, M. Koizumi, T. Hirai, and I. Shiota), Functionally Gradient Materials Forum, 203ā€“208.

    Google ScholarĀ 

  41. Willert-Porrada, M. (1994) Microwave processing of metalorganics to form powders, compacts, and functional gradient materials, MRS Bulletin, 18 (11) 51ā€“57.

    Google ScholarĀ 

  42. Kimura, H. and Satoh, T. (1997) Residual stress control of functionally graded materials via pulsed electric discharge consolidation with temperature gradient control, in Proc. of the Fourth Intā€™l. Symp. on FGMā€™96, (eds. I. Shiota and Y. Miyamoto), Elsevier Science B.V., Amsterdam, 355ā€“60.

    Google ScholarĀ 

  43. Tokita, M. (1997) Mechanisms of spark plasma sintering, private communication.

    Google ScholarĀ 

  44. Omori, M. et al.. (1994) Preparation and properties of ZrO2(3Y) functionally gradient material, in Proc. of The Third Intā€™l Symp. on Structural and Functional Gradient Materials, (eds. B. Ilschner and N. Cherradi), Presses Polytechniques et Universitaires Romandes, Lausanne, 71ā€“76.

    Google ScholarĀ 

  45. Omori, M. et al.. (1994) Functionally gradient materials from Al and polyimide, in Proc. of The Third Intā€™l Symp. on Structural and Functional Gradient Materials, (eds. B. Ilschner and N. Cherradi), Presses Polytechniques et Universitaires Romandes, Lausanne, 667ā€“672.

    Google ScholarĀ 

  46. Bouvard, D. and Lange, E.F. (1991) Relation between percolation and particle coordination in binary powder mixtures, Acta Materialia, 39, 3083ā€“90.

    CASĀ  Google ScholarĀ 

  47. Lin, C.Y., McShane, H.B., and Rawlings, R.D. (1994) Structure and properties of functionally gradient aluminium alloy 2124/SiC components, J. Materials Science and Technology, 10, 659ā€“664.

    CASĀ  Google ScholarĀ 

  48. Lin, C.Y., McShane, H.B., and Rawlings, R.D. (1994) Fracture behavior of silicon carbide/aluminum-2124 alloy functionally graded materials, in Proc. of The Third Intā€™l Symp. on Structural and Functional Gradient Materials, (eds. B. Ilschner and N. Cherradi), Presses Polytechniques et Universitaires Romandes, Lausanne, 327ā€“332.

    Google ScholarĀ 

  49. Bishop, A. et al.. (1993) A functionally gradient material produced by a powder metallurgical process, J. Materials Science Letters, 12, 1516ā€“1518.

    CASĀ  Google ScholarĀ 

  50. Lee, J.S., Kaysser, W.A, and Petzow, G. (1985) Microstructural changes in W-Cu and W-Cu-Ni compacts during heating up for liquid phase sintering, in modern developments, in Powder Metallurgy, (eds. E.N. Aqua and CM. Whitman), MPIF-APMI, Princeton, NJ, 15, 489ā€“506.

    Google ScholarĀ 

  51. Uchino, K., et al. (1996) Study on the composition graded cemented carbides/steel composite by spark plasma sintering, Journal of the Society of Powder Technology Japan, 43(4), 472ā€“477.

    CASĀ  Google ScholarĀ 

  52. Ikegaya, A, et al. (1997) Study on the composition graded cemented carbide/steel by spark plasma sintering, in Proc. of The Fourth Intā€™l. Symp. on FGMā€™96, (eds. I. Shiota and Y. Miyamoto), Elsevier Science B.V., Amsterdam, 361ā€“66.

    Google ScholarĀ 

  53. Kang, S.J.L. et al. (1984) Elimination of pores during grain growth in the presence of a liquid phase, Powder Metallurgy, 27, 97ā€“100.

    CASĀ  Google ScholarĀ 

  54. Kang, S.J.L. et al. (1985) Growth of Mo grains around A12O3 particles during liquid phase sintering. Acta Materialia, 33, 1919ā€“26.

    CASĀ  Google ScholarĀ 

  55. Kang, S.J.L. et al. (1985) Liquid phase sintering of Mo-Ni alloys for elimination of isolated pores in modern developments, in Powder Metallurgy, (eds. E.N. Aqua and C.M. Whitman), MPIF-APMI, Princeton, NJ, 15, 477ā€“88.

    Google ScholarĀ 

  56. Kaysser, W.A. (1992) Sintern mit ZusƤtzen (Sintering with Additives) Monography in Materialkundlich-Technische Reihe Vol.11, GebrĆ¼der Borntraeger, Stuttgart, 206ā€“208.

    Google ScholarĀ 

  57. Kaysser, W.A, Schneider, G., and Petzow, G. (1984) Influence of metallographic preparation on the analysis of large pores in liquid phase sintered Fe-30Cu, Practical Metallography, 21, 13ā€“18.

    CASĀ  Google ScholarĀ 

  58. Richter, V. (1994) Fabrication and properties of gradient hard metals, in Proc. of The Third Intā€™l. Symp. on Structural and Functional Gradient Materials, (eds. B. Aschner and N. Cherradi), Presses Polytechniques et Universitaires Romandes, 587ā€“92.

    Google ScholarĀ 

  59. Lissovsky, W. (1991) Composition and structure of cemented carbides produced by MMT process, Powder Metallurgy International, 23(3), 157ā€“161.

    Google ScholarĀ 

  60. Sacks, M.D. et al. (1992) Processing of composite powders, fabrication of ceramics and composites by viscous sintering and transient viscous sintering, in Chemical Processing of Advanced Materials (eds. L.L. Hench and J.K. West), Willey, New York, 557ā€“575.

    Google ScholarĀ 

  61. Bartsch, M. et al. (1999) FGM-oxidation protection systems for non-oxide ceramics, In Functionally Graded Materials 1998, ed.W.A. Kaysser, Materials Science Forum, vols. 308ā€“311, Trans Tech Publications Ltd, ZĆ¼rich, 49ā€“54.

    Google ScholarĀ 

  62. Ashby, M.F. (1987) Hot isostatic pressing diagrams, HIP487, Cambridge University, Engineering Department, Cambridge, UK.

    Google ScholarĀ 

  63. Helle, A.S., Easterling, K.E., and Ashby, M.F. (1985) Hot isostatic pressing diagrams, new developments, Acta Metallurgica, 33(12), 2163ā€“2174.

    ArticleĀ  CASĀ  Google ScholarĀ 

  64. Barthel, K., Cherradi, N., and Ilschner, B. (1994) P/M preparation of intermetallic NiAl compounds with graded addition of Cr, in Proc. of The Third Intā€™l. Symp. on Structural and Functional Gradient Materials, (eds. B. Ilschner and N. Cherradi), Presses Polytechniques et Universitaires Romandes, 47ā€“52.

    Google ScholarĀ 

  65. Zhang, L.M. et al. (1994) Preparation of TiC/Ni3Al FGMs, sintering and structure, in Proc. of The Third Intā€™l. Symp. on Structural and Functional Gradient Materials, (eds. B. Ilschner and N. Cherradi), 60ā€“64.

    Google ScholarĀ 

  66. Rƶssler, J. and Tƶnnes, C. (1994) Processing of TiAl components with gradient microstructure, in Proc. of The Third Intā€™l. Symp. on Structural and Functional Gradient Materials, (eds. B. Ilschner and N. Cherradi), 41ā€“46.

    Google ScholarĀ 

  67. Takahashi, M. et al. (1993) Fabrication of tungsten/copper graded material, in Proc. 13 th International Plansee Seminar, Vol.4 (1993) 17ā€“28.

    Google ScholarĀ 

  68. Willert-Porrada, M. and Vodegel, S. (1992) Process for sintering low dielectric loss materials by microwaves, in German Patent P 42249774, 0.

    Google ScholarĀ 

  69. Willert-Porrada, M. (1994) Microwave processing of metalorganics to form powders, compacts, and functional gradient materials, MRS Bulletin, 18(11), 51ā€“57.

    Google ScholarĀ 

  70. Willert-Porrada, M, Gerdes, T, and Bordiert, R. (1994) Application of microwave processing to preparation of ceramic and metal-ceramic FGM, in Proc. of The Third Intā€™l. Symp. on Structural and Functional Gradient Materials, (eds. B. Ilschner and N. Cherradi), Presses Polytechniques et Universitaires Romandes, 16ā€“20.

    Google ScholarĀ 

  71. Merzhanov, A.G. (1990) Self-propagating high-temperature synthesis, twenty years of search and findings, in Combustion and Plasma Synthesis of High Temperature Materials, (eds. Z.A. Munir and J.B. Holt), VCH-Publishing Company, Weinheim-New York, 1ā€“53.

    Google ScholarĀ 

  72. Munir, Z.A. (1988) Synthesis of high temperature materials by self-propagating combustion methods, Ceramic Bulletin, 67, 342ā€“349.

    CASĀ  Google ScholarĀ 

  73. Merzhanov, A.G. and Pityulin, A.N. (1994) Self-propagating high-temperature synthesis in the production of functionally gradient material, in Proc. of The Third Intā€™l. Symp. on Structural and Functional Gradient Materials, (eds. B. Ilschner and N. Cherradi), Presses Polytechniques et Universitaires Romandes, 87ā€“94.

    Google ScholarĀ 

  74. Miyamoto, Y., Koizumi, M., and Yamada, O. (1984) High pressure self-combustion sintering for ceramics, J. Am. Ceram. Soc., 67, 224ā€“25.

    ArticleĀ  Google ScholarĀ 

  75. Sata, N. et al. (1990) Research and development of functionally gradient materials by using an SHS process, in Proc. 1 st US-Japanese Workshop on Combustion Synthesis 1990, 139ā€“45.

    Google ScholarĀ 

  76. Sata, N. and Ikeuchi, J. (1990) Simultaneous synthesis and forming of Ti-B system by self-propagating reaction, J. Ceram. Soc. Japan, 95, 243ā€“47.

    Google ScholarĀ 

  77. Miyamoto, Y. et al. (1990) Processing study for TiB2-Ni FGM by gas-pressure combustion sintering, in Proc. of The First Intl. Symp. on FGMā€™90, Sendai (eds. M. Yamanouchi, M. Koizumi, T. Hirai, and I. Shiota), Functionally Gradient Materials Forum, 169ā€“73.

    Google ScholarĀ 

  78. Miyamoto, Y. et al. (1990) Gas-pressure combustion sintering of TiC-Ni FGM, in Proceedings The First International Symposium FGM, (eds. M. Yamanouchi, M. Koizumi, T. Hirai, and I. Shiota), 257ā€“62.

    Google ScholarĀ 

  79. Pityulin, A.N., Bogatov, Yu.V., and Rogachev, A.S. (1992) Gradient hard alloys, International Journal of Self-Propagating High-Temperature Synthesis, 1, 111ā€“118.

    CASĀ  Google ScholarĀ 

  80. Niedzialek, S.E. and Stangle, G.C. (1993) Combustion-synthesized functionally gradient refractory materials. J. Mater. Res., 8, 2026ā€“2034.

    ArticleĀ  CASĀ  Google ScholarĀ 

  81. Tanihata, K. et al. (1993) Fabrication of Cr3C2/Ni functionally gradient materials by gas-pressure combustion sintering, Ceramic Transactions, 34, Functionally Gradient Materials, Am. Ceram. Soc., 361ā€“368.

    Google ScholarĀ 

  82. Ge, C.C., Wang, Z.X., and Cao, W.B. (1996) Thermodynamic calculation and processing of TiB2-Cu FGM, in Proc. of The Fourth Intā€™l Symp. on FGMā€™96 (eds. I. Shiota and Y. Miyamoto), Elsevier Science B.V., Amsterdam, 301ā€“306.

    Google ScholarĀ 

  83. Sata, N. et al. (1990) Fabrication of a functionally gradient material by using a self-propagating reaction process, in Combustion and Plasma Synthesis of high Temperature Materials, (eds. Z.A. Munir and J.B. Holt), VCH-Publishing Company, Weinheim-New York, 195ā€“203.

    Google ScholarĀ 

  84. Matsuzaki, Y. et al. (1990) Fabrication of (MoSi2-SiC)/TiAl functionally gradient materials by gas-pressure combustion sintering process, in Proc. of The First Intā€™l Symp. on FGMā€™90, Sendai (eds. M. Yamanouchi, M. Koizumi, T. Hirai, and I. Shiota), Functionally Gradient Materials Forum, 263ā€“268.

    Google ScholarĀ 

  85. Lai, W. et al. (1996) Formation of functionally-graded materials through centrifugally-assisted combustion synthesis, in Proc. of The Fourth Intā€™l. Symp. on FGMā€™96 (eds. I. Shiota and Y. Miyamoto), Elsevier Science B.V., Amsterdam, 275ā€“281.

    Google ScholarĀ 

  86. Levashov, E.A. et al. (1996) SHS-a new technological approach for creation of novel multilayered diamond-containing materials with graded structure, in Proc. of The Fourth Intā€™l. Symp. on FGMā€™96 (eds. I. Shiota and Y. Miyamoto), Elsevier Science B.V., Amsterdam, 283ā€“288.

    Google ScholarĀ 

  87. Ohyanagi, M. et al. (1996) Graded dispersion of diamond in TiB2-based cermet by SHS/dynamic pseudo isostatic compaction, in Proc. of The Fourth Intā€™l. Symp. on FGMā€™96 (eds. I. Shiota and Y. Miyamoto), Elsevier Science B.V., Amsterdam, 289ā€“294.

    Google ScholarĀ 

  88. Chiba, a. et al. (1992) Underwater-shock consolidation of difficult-to-consolidate powder in shock wave and high-strain-rate phenomena, in Materials, Marcel Decker, Inc., 415.

    Google ScholarĀ 

  89. Chiba, a. et al. (1994) Fabrication of functionally gradient materials powder consolidation technique using underwater-shock pressure, in Proc. of The Third Intā€™l. Symp. on Structural and Functional Gradient Materials, (eds. B. Ilschner and N. Cherradi), Presses Polytechniques et Universitaires Romandes, 21ā€“26.

    Google ScholarĀ 

  90. Schubert, E. et al. (1999) Laser beam cladding, a flexible tool for local surface treatment and regeneration, J. Thermal Spray Technology, 7. 459ā€“467.

    Google ScholarĀ 

  91. Jasim, K.M., Rawlings, R.D., and West, D.R.F. (1993) Metal-ceramic functionally gradient material produced by laser processing, J. Material Science, 28, 2820ā€“2826.

    ArticleĀ  CASĀ  Google ScholarĀ 

  92. ThĆ¼mmler, F. and Oberacker, R. (1993) An introduction to powder metallurgy, in The Institute of Materials Science on Powder Metallurgy, (eds. I. Jenkins and J.V. Wood), The Institute of Metals, London, 177ā€“180.

    Google ScholarĀ 

  93. Mathuar, P., Apelian, D., and Lawley, A. (1991) Fundamentals of spray deposition via Osprey processing, Powder Metallurgy, 34, 109ā€“111.

    Google ScholarĀ 

  94. Lutz, E.H. (1994) Microstructure and properties of plasma ceramics, Journal of the American Ceramic Society, 77(5), 1274ā€“1280.

    ArticleĀ  CASĀ  Google ScholarĀ 

  95. Sampath, S. et al. (1995) Thermal spray processing of FGMs, MRS Bulletin, 20(1), 27ā€“31.

    CASĀ  Google ScholarĀ 

  96. Mendelson, M.I. (1997) Manufacturing of plasma sprayed graded materials, presented at 21st Annual Cocoa Beach Conference & Exposition on Composites, Advanced Materials and Structures, Cocoa Beach, FL.

    Google ScholarĀ 

  97. Sickinger, A. and Muehlburger, E. (1992) Advanced low-pressure plasma application in powder metallurgy, Powder Metallurgy International, 24, 91.

    CASĀ  Google ScholarĀ 

  98. Shinohara, Y. et al. (1993) Thermal stability of plasma sprayed Ni-Cr-Al-Y/PSZ FGM in uniform and in graded temperature fields, in Ceramic Transactions, Vol. 34, Proc. of The Second Intā€™l. Symp. on FGMā€™92, (eds. J.B. Holt, M. Koizumi, T. Hirai, and Z.A. Munir), American Ceramic Society, Westerville, OH, 255ā€“262.

    Google ScholarĀ 

  99. Fukushima, T., Kuroda, S., and Kitahara, S. (1990) Gradient coatings formed by plasma twin torches and their properties, in Proc. of The First Intā€™l Symp. on FGMā€™90, Sendai, (eds. M. Yamanouchi, M. Koizumi, T. Hirai, and I. Shiota), Functionally Gradient Materials Forum, The Society of Non-Traditional Technology, Tokyo, 145ā€“150.

    Google ScholarĀ 

  100. Shimoda, N. et al. (1990) Production of functionally gradient materials by applying low pressure plasma spraying, in Proc. of The First Intā€™l Symp. on FGMā€™90, Sendai, 151ā€“156.

    Google ScholarĀ 

  101. Hamatani, H. et al. (1993) Microstructure of plasma sprayed functionally gradient materials, in Ceramic Transactions, Vol.34, Proc. of The Second Intā€™l. Symp. on FGMā€™92, (eds. J.B. Holt, M. Koizumi, T. Hirai, and Z.A. Munir), American Ceramic Society, Westerville, OH, 385ā€“392.

    Google ScholarĀ 

  102. Steffens, H.-D., Dvorak, M., and Wewel, M. (1990) Plasma sprayed functionally gradient materials ā€” processing and applications, in Ceramic Transactions, Vol.34, Proc. of The Second Intā€™l. Symp. on FGMā€™92, 139ā€“143.

    Google ScholarĀ 

  103. Schulz, U. et al. (1995) Processing and behavior of chemically graded EB-PVD MCrAlY bond coats, in Proc. of Intā€™l. Symp. on FGMā€™94, (eds. B. Ilschner and N. Cherradi), Presses Polytechniques et Universitaires Romandes, Lausanne, 441ā€“446.

    Google ScholarĀ 

  104. Fritscher, K. and Schulz, U. (1993) Burner-rig performance of density-graded EB-PVD processed thermal barrier coatings, in Ceramic Coatings, (ed. K. Kokini), ASME-MD-Vol.44, 1ā€“8.

    Google ScholarĀ 

  105. Movchan, B.A. (1996) EB-PVD technology in the gas turbine industry, present and future, Journal of Metals, 11, 40ā€“45.

    Google ScholarĀ 

  106. Schulz, U. et al. (1997) Graded design of EB-PVD thermal barrier coating systems, AGARD 85th Structures and Materials Panel Meeting, Workshop 3, Thermal Barrier Coatings, Aalborg, Denmark.

    Google ScholarĀ 

  107. Sonoda, T. and Kato, M. (1997) Coating of Ti-6A1ā€“4V Alloy substrate with Ti/N compositional gradation by reactive DC sputtering, Materials Research Bulletin, 32, 899ā€“905.

    ArticleĀ  CASĀ  Google ScholarĀ 

  108. Govindarajan, S. et al. (1996) On the possibility of tailoring a compositional gradient in thin films sputtered from a MoSi2 + SiC composite target, Surface and Coatings Technology, 87/88, 33ā€“40.

    ArticleĀ  Google ScholarĀ 

  109. Leyens, C., Peters M., and Kaysser, W.A. (1996) Oxidation behavior of near-alpha titanium alloys and their protection by coatings, in Titaniumā€™95, Science and Technology, (eds. P.A. Blenkinsop, W.J. Evans, and H.M. Flower), The Institute of Materials, London, 1935ā€“1942.

    Google ScholarĀ 

  110. Leyens, C., Peters, M., and Kaysser, W.A. (1997) Oxidation and protection of near-alpha titainium alloys, Materials Science Forum, 251/254, 769ā€“776.

    ArticleĀ  Google ScholarĀ 

  111. Leyens, C. et al. (1996) Influence of intermetallic Ti-Al coatings on the fatigue properties of timetal 1100, Scripta Materialia, 36, 1309ā€“1314

    ArticleĀ  Google ScholarĀ 

  112. Hirai, T. (1995) CVD-Processing, MRS-Bulletin, 20(1), 45ā€“47.

    CASĀ  Google ScholarĀ 

  113. Sasaki, M. et al. (1989) Design of SiC/C functionally gradient material and its preparation by chemical vapor deposition, J. Ceram. Soc. Jpn. Inter. Ed., 97, 530ā€“534.

    Google ScholarĀ 

  114. Kowbel, W. (1988) Graded-composited ZrC-BN coating for the thermal protection of carbon-carbon composites, in Proceedings Third International Symposium of Ceramic Materials and Components for Engines, (ed. V.J. Tennery), The American Ceramic Society, Westerville, 290ā€“308.

    Google ScholarĀ 

  115. Kowbel, W. (1993) The Mechanism of oxidation protection of C/C composites coated with graded-codeposited carbides, in Proc. of The Second Intā€™l. Symp. on FGMā€™92, (eds. J.B. Holt, M. Koizumi, T. Hirai, and Z.A. Munir), American Ceramic Society Transactions 34, The American Ceramic Society, Westerville, 237ā€“244.

    Google ScholarĀ 

  116. Kurihara, K., Sasaki, K., and Kawarada, M. (1990) Adhesion improvement of diamond films, in Proc. of The First Intā€™l. Symp. on FGMā€™90, Sendai, (eds. M. Yamanouchi, M. Koizumi, T. Hirai, and I. Shiota) Functionally Gradient Materials Forum, The Society of Non-Traditional Technology, Tokyo, 65ā€“69.

    Google ScholarĀ 

  117. Yamamoto, O. et al. (1993) Preparation of carbon material with SiC-concentration gradients by silicon impregnation, J. European Ceramic Society, 12, 435ā€“440.

    ArticleĀ  CASĀ  Google ScholarĀ 

  118. Duvall, D.S., Owczarski, W.A., and Paulonis, D.F. (1974) TLP bonding, a new method for joining heat resistant alloys, Welding Journal, 53, 203ā€“214.

    CASĀ  Google ScholarĀ 

  119. Locatelli, M.R. et al. (1994) Transient liquid phase bonding of alumina ceramics via microdesigned Ni-based interlayers, International Ceramic Monographs, 1, [89], 203ā€“208.

    CASĀ  Google ScholarĀ 

  120. Ilschner, B. (1991) Gradient materials by powder metallurgy and by galvanoforming, in Ceramic Transactions Vol.34, Proc. of The Second Intā€™l. Symp. on Functionally Gradient Materials, (eds. J.B. Holt, M. Koizumi, T. Hirai, and Z.A. Munir), American Ceramic Society, Westerville, 101ā€“106.

    Google ScholarĀ 

  121. Barmak, K. et al. (1996) Processing and properties of electrodeposited functionally graded composite coatings of Ni-Al-Al2O3, in Proc. of The Fourth Intā€™l. Symp. on FGMā€™96, (eds. I. Shiota and Y. Miyamoto), Elsevier Science B.V., Amsterdam, 227ā€“232.

    Google ScholarĀ 

  122. Takeuchi, H., Tsunekawa, Y., and Okumiyama, M. (1997) Formation of compositionally graded Ni-P deposits containing SiC particles by jet electroplating, Materials Transactions JIM, 38(1), 43ā€“48.

    CASĀ  Google ScholarĀ 

  123. Sarkar, P., Huang, X., and Nicholson, P.S. (1992) Structural ceramic microlaminates by electrophoretic deposition, Journal of the American Ceramic Society, 75, 2907ā€“2909.

    ArticleĀ  CASĀ  Google ScholarĀ 

  124. Sarkar, P., Huang, X., and Nicholson, P.S. (1993) Electrophoretic deposition and its use to synthesize YSZ/A12O3 microlaminate ceramic/ceramic composites, Ceramic Engineering & Science Proceedings, 14, 707ā€“726.

    ArticleĀ  CASĀ  Google ScholarĀ 

  125. Nicholson, P.S., Sarkar, P., and Huang, X. (1993) Potentially strong and tough ZrO2-based composites 1300Ā°C by electrophoretic deposition, in Science and Technology of Zirconia V, (eds. S.P.S. Badwal, M.J. Bannistar, and R.H.J. Hannik), Technomic Publishing Company Inc., Lancaster, 503ā€“516.

    Google ScholarĀ 

  126. Whitehead, M., Sarkar, P., and Nicholson, P.S. (1994) Micro-laminate ceramic/ceramic composite (YPSZ/A12O3) by electrophoretic deposition, Ceramic Engineering and Science Proceedings, 15, 1019ā€“1027.

    ArticleĀ  Google ScholarĀ 

  127. Prakash, O., Sarkar, P., and Nicholson, P.S. (1995) Structure and fracture behavior of t-ZrO2/Al2O3 lamellar composites, Fatigue and Fracture of Engineering Materials Structures, 18(7/8), 897ā€“904.

    CASĀ  Google ScholarĀ 

  128. Sarkar, P., Huang, X., and Nicholson, P.S. (1993) Zirconia/alumina functionally gradient composites by electrophoretic deposition techniques, Journal of the American Ceramic Society, 76, 1055ā€“1056.

    ArticleĀ  CASĀ  Google ScholarĀ 

  129. Sarkar, P. and Nicholson, P.S. (1996) Electrophoretic deposition (EPD), mechanisms, kinetics, and application to ceramics, Journal of the American Ceramic Society, 79, 1987ā€“2002.

    ArticleĀ  CASĀ  Google ScholarĀ 

  130. Katoh, M. and Igarashi, T. (1997) Thermoionic properties and thermal stability of emitter with (0001) oriented rhenium layer and graded structure, in Proc. of the Fourth Intā€™l. Symp. on FGMā€™96, (eds. I. Shiota and Y. Miyamoto), Elsevier Science B.V., Amsterdam, 655ā€“659.

    Google ScholarĀ 

  131. Kitayama, M., Powers, J.D., and Glaeser, A.M. (1996) Novel routes to functionally graded ceramics via atmosphere-induced dopant valence gradients, in Proc. of the Fourth Intā€™l. Symp. on FGMā€™96, 325ā€“330.

    Google ScholarĀ 

  132. Agari, Y. et al. (1997) Preparation and properties of PVC/polymethacrylate graded blends by dissolution-diffusion method, in Proc. of the Fourth Intā€™l. Symp. on FGMā€™96, 761ā€“766.

    Google ScholarĀ 

  133. Low, I.M. et al. (1997) Characteristics of epoxy-modified zirconium phosphate materials produced by an infiltration process, in Proc. of the Fourth Intā€™l. Symp. on FGMā€™96, 755ā€“759.

    Google ScholarĀ 

  134. Low, I.M., Skala, R.D., and Mohazzab, G. (1994) Mechanical and fracture properties of epoxy-modified YBaCuO(123) superconductors, J. Materials Science Letters, 13, 1340ā€“1342.

    ArticleĀ  CASĀ  Google ScholarĀ 

  135. Low, I.M., Wang, H., and Skala, R.D. (1995) Epoxy-modified Bi(Pb)SrCaCuO superconductors with improved mechanical properties, J. Materials Science Letters, 14, 384ā€“386.

    ArticleĀ  CASĀ  Google ScholarĀ 

  136. Gasik, M. (1994) Processing and characterization of WC-Co functional gradient materials, in Proc. of The Third Intā€™l. Symp. on Structural and Functional Gradient Materials, (eds. B. Ilschner and N. Cherradi), Presses polytechniques et universitaires romandes, 575ā€“576.

    Google ScholarĀ 

  137. Fuji, K., Nakano, J., and Shindo, M. (1994) Evaluation of characteristic properties of a newly developed graphite material with a SiC/C composition gradient, in Proc. of The Third Intā€™l. Symp. on Structural and Functional Gradient Materials, 541ā€“547.

    Google ScholarĀ 

  138. Miyamoto, Y. (1990) New ceramic processing approaches using combustion synthesis under gas pressure, Am. Ceram. Soc. Bull., 69(4), 686ā€“90.

    CASĀ  Google ScholarĀ 

  139. Kawasaki, A. and Watanabe, R. (1990) The occurrence of a flexural vibration mode in a PZT piezoelectric material by temperature gradient sintering (in Japanese), J. Japanese Society of Powder Metallurgy, 37, 287ā€“291.

    ArticleĀ  CASĀ  Google ScholarĀ 

  140. Willert-Porrada, M. (1993) Microwave processing of metalorganics to form powders, compacts, and functional gradient materials, MRS Bulletin, 18(11), 51ā€“57.

    Google ScholarĀ 

  141. Willert-Porrada, M., Gerdes, T., and Borchert, R. (1994) Application of microwave processing to preparation of ceramic and metal-ceramic FGM, in Proc. of The Third Intā€™l. Symp. on Structural and Functional Gradient Materials, (eds. B. Ilschner and N. Cherradi), Presses polytechniques et universitaires romandes, 16ā€“20.

    Google ScholarĀ 

  142. Neubrand, A., Jedanzik, R., and Rƶdel, J. (1997) Functionally graded materials by electrochemical modification of porous preforms, in Proc. of The Fourth Intā€™l. Symp. on FGMā€™96, (eds. I. Shiota and Y. Miyamoto), Elsevier Science B.V., Amsterdam, 233ā€“238.

    Google ScholarĀ 

  143. Watanabe, Y., Nakamura, Y., and Fukui, Y. (1997) Fabrication of magnetic functionally graded material by martensitic transformation technique, in Proc. of The Fourth Intā€™l. Symp. on FGMā€™96, 713ā€“716.

    Google ScholarĀ 

  144. Chul, S.-C. and German, R.M. (1991) Gravitational limit of particle volume fraction in liquid phase sintering, Met. Trans. A, 22A, 786ā€“791.

    Google ScholarĀ 

  145. Kipphut, C.M. et al. (1988) Gravity and configurational energy induced microstructural changes in liquid phase sintering, Met. Trans. A, 19A, 1905ā€“1913.

    ArticleĀ  CASĀ  Google ScholarĀ 

  146. Fukui, Y. and Nakanishi, K. (1991) Fundamental investigation of functionally gradient material manufacturing system using centrifugal force, Japanese Society of Metals Engineering, International journal Series III, 34, 144ā€“148.

    Google ScholarĀ 

  147. Fukui, Y., Yamaka, N., and Enokida, Y. (1997) Bending strength of an Al-Al3Ni functionally graded material, Composites Part B, 28B, 37ā€“43.

    ArticleĀ  CASĀ  Google ScholarĀ 

  148. Fukui, Y., Takashima, K., and Ponton, C.B. (1994) Measurement of Youngā€™s modulus and internal friction of an in situ Al-Al3Ni functionally gradient material, J. Materials. Science., 29, 2282ā€“2288.

    ArticleĀ  Google ScholarĀ 

  149. Ueltzen, M. et al. (1997) The Growth of functionally graded crystals by Verneuilā€™s technique, in Proc. of The Fourth Intā€™l. Symp. on FGMā€™96, (eds. I. Shiota and Y. Miyamoto), Elsevier Science B.V., Amsterdam, 331ā€“336.

    Google ScholarĀ 

  150. Ueltzen, M. (1993) The Verneuil flame fusion process: substances, J. Crystal Growth, 132,315ā€“322.

    ArticleĀ  CASĀ  Google ScholarĀ 

  151. Minagawa, H. et al. (1997) Synthesis of In-Sn alloys by directional solidification in microgravity and normal gravity conditions, in Proc. of The Fourth Intā€™l. Symp. on FGMā€™96, (eds. I. Shiota and Y. Miyamoto), Elsevier Science B.V., Amsterdam, 695ā€“700.

    Google ScholarĀ 

  152. Bienvenue, Y. et al. (1994) Diffusion bonding of nickel base superalloys to manufacture turbine components with a graded microstructure, in Proc. of The Third Intā€™l. Symp. on Structural and Functional Gradient Materials, (eds. B. Ilschner and N. Cherradi), Presses Polytechniques et Universitaires Romandes, Lausanne, 487ā€“494.

    Google ScholarĀ 

  153. Larker, R. and Beckman, T. (1994) Compositional gradation between silicon nitride and superalloys using Si3N4/TiN CMC and TiN/Ni MMC layers, in Proc. of The Third Intā€™l. Symp. on Structural and Functional Gradient Materials, , 495ā€“501.

    Google ScholarĀ 

  154. Prader, R. et al. (1994) Microstructures and mechanical properties of graded composition joints between different heat resistant steels, in Proc. of The Third Intā€™l. Symp. on Structural and Functional Gradient Materials, , 479ā€“485.

    Google ScholarĀ 

  155. Duvall, D.S., Owczarski, W.A., and Paulonis, D.F. (1974) TLP bonding, a new method for joining heat resistant alloys, Welding Journal, 53, 203ā€“214.

    CASĀ  Google ScholarĀ 

  156. Glaeser, A.M. (1997) The use of transient FGM interlayers for joining advanced ceramics, Composites, 28B, 71ā€“84.

    CASĀ  Google ScholarĀ 

  157. Shalz, M.L. et al. (1993) Ceramic joining I, partial transient liquid phase bonding of alumina with Cu/Pt interlayers, Journal of Materials Science, 28(6), 1673ā€“1674.

    ArticleĀ  CASĀ  Google ScholarĀ 

  158. Tuah-Poku, I., Dollar, M., and Massalski, T.B. (1988) A study of the transient liquid phase bonding process applied to a Ag/Cu/Ag sandwich joint, Metallurgical Transactions A, 19A, [153], 675ā€“686.

    ArticleĀ  CASĀ  Google ScholarĀ 

  159. Shalz, M.L. et al. (1994) Ceramic joining II, partial transient liquid phase bonding of alumina via Cu/Ni/Cu multilayer interlayers, Journal of Materials Science, 29(12), 3200ā€“3208.

    ArticleĀ  CASĀ  Google ScholarĀ 

  160. Glaeser, A.M. et al. (1993) A transient FGM interlayer based approach to joining ceramics, in Ceramic Transactions, Vol.34, Functionally Gradient Materials, (eds. J.B. Holt, M. Koizumi, T. Hirai, and Z.A. Munir), The American Ceramic Society, Westerville, OH, 341ā€“357.

    Google ScholarĀ 

  161. Locatelli, M.R. et al. (1994) Transient liquid phase bonding of alumina ceramics via microdesigned Ni-based interlayers, International Ceramic Monographs, 1, [151], 203ā€“208.

    CASĀ  Google ScholarĀ 

  162. Ceccone, G. et al. (1996) An evaluation of the partial transient liquid phase bonding of Si3N4 using Au-coated Ni-22Cr foils, Acta Materialia, 44, 657.

    ArticleĀ  CASĀ  Google ScholarĀ 

  163. Kagegawa, K. and Glaeser, A.M. (1997) Transient FGM joining of silicon carbide ceramic, a feasibility study, Composites, 28B, 85ā€“91.

    Google ScholarĀ 

  164. Rabin, B.H. (1990) Modified tape casting method for ceramic joining, application to joining of silicon carbide, J. of Am. Ceram. Soc., 73, 2757ā€“2759.

    ArticleĀ  CASĀ  Google ScholarĀ 

  165. Itoh, I. et al. (1994) Insert metal of Al-Sn alloy for diffusion bonding in the atmosphere, in Proc. of The Third Intā€™l. Symp. on FGMā€™94, (eds. B. Ilschner and N. Cherradi), Presses Polytechniques et Universitaires Romandes, Lausanne, 473ā€“477.

    Google ScholarĀ 

  166. Kirihara, S., Tsujimoto, T., and Tomota, Y. (1997) Development of metal/intermetallic compound functionally graded material produced by eutectic bonding method, in Proc. of The Third Intā€™l Symp. on FGMā€™96, (eds. I. Shiota and Y. Miyamoto), Elsevier Science B.V., Amsterdam, 197ā€“202.

    Google ScholarĀ 

  167. Agarwala, M.K. et al. (1996) FDC, Rapid fabrication of structural components, Am. Ceram. Soc. Bull., 75(11), 60ā€“75.

    CASĀ  Google ScholarĀ 

  168. Marcus, H.L. et al. (1995) Proceedings of the Solid Freeform Fabrication Symposium (Austin, TX, August, 1995), The University of Texas at Austin, TX.

    Google ScholarĀ 

  169. Marcus, H.L. et al. (1994) Proceedings of the Solid Freeform Fabrication Symposium (Austin, TX, August, 1994), The University of Texas at Austin, TX.

    Google ScholarĀ 

  170. Burns, M. (1993) Automated Fabrication, Improving Productivity In Manufacturing, PTR Prentice Hall, Englewood Cliffs, NJ.

    Google ScholarĀ 

  171. Kochan, D. (1993) Solid Freeform Manufacturing, Advanced Rapid Prototyping, Elsevier, New York, NY.

    Google ScholarĀ 

  172. Feygin, M. and Hsieh, B. (1991) Laminated object manufacturing (LOM), A simpler process, in Proceedings of the Solid Freeform Fabrication Symposium, (Austin, TX, August, 1991), 123, The University of Texas at Austin, TX.

    Google ScholarĀ 

  173. Griffin, C., Daufenbach, J., and McMillin, S. (1994) Desktop manufacturing, LOM vs pressing, Am. Cer. Soc. Bull., 73[173], 109ā€“103.

    Google ScholarĀ 

  174. Jacobs, P.F. (1992) Rapid Prototyping & Manufacturing, Fundamentals of Stereolithography, First Edition, Society of Manufacturing Engineers, Dearborn MI.

    Google ScholarĀ 

  175. Griffith, M.L. (1995) Stereolithography of ceramics, Ph.D. dissertation, Department Materials Science and Engineering, The University of Michigan, Ann Arbor, MI.

    Google ScholarĀ 

  176. Deckard, C. and Beaman, J. (1987) Recent advances in selective laser sintering, in Proceedings of the Fourteenth Conference on Production Research and Technology, 447ā€“452, University of Michigan, MI.

    Google ScholarĀ 

  177. Vail, N.K., Barlow, J.W., and Marcus, H.L. (1993) SiC preforms for metal infiltration by selective laser sintering of polymer encapsulated powders, in Proceedings of the SFF Symposium, 204, University of Texas, Austin, TX.

    Google ScholarĀ 

  178. Sachs, E.M. et al. (1992) Three-dimensional printing, rapid tooling and prototypes directly from a CAD model, J. Eng. Ind., 114, 481ā€“488.

    ArticleĀ  Google ScholarĀ 

  179. Sachs, E. et al. (1992) CAD-casting, The direct fabrication of ceramic shells and cores by three dimensional printing, Man. Rev., 5[167], 117ā€“126.

    Google ScholarĀ 

  180. Yoo, J. et al. (1993) Structural ceramic components by 3D printing, in Proceedings of the SFF Symposium, 40ā€“50, Univ. of Texas, TX.

    Google ScholarĀ 

  181. Cima, M.J. et al. (1995) Structural ceramic components by 3D printing, in Proceedings of the SFF Symposium, 479ā€“488, Univ. of Texas, TX.

    Google ScholarĀ 

  182. Michaels, S., Sachs, E.M., and Cima, M.J. (1992) Metal parts generation by three dimensional printing, in Proceedings of the SFF Symposium, 244ā€“250, Univ. of Texas, TX.

    Google ScholarĀ 

  183. Cima, M.J. et al. (1994) Computer-derived microstructures by 3D printing bio and structural materials, in Proceedings of the SFF Symposium, 181ā€“190, University of Texas, TX.

    Google ScholarĀ 

  184. Wales, R. and Walters, B. (1991) Fast, precise, safe prototypes with FDM, in Proceedings of the SFF Symposium, 115, University of Texas, Austin, TX.

    Google ScholarĀ 

  185. Agarwala, M.K. et al. (1995) Structural ceramics by fused deposition of ceramics, in Proceedings of the SFF Symposium, 1-8, University of Texas, Austin, TX.

    Google ScholarĀ 

  186. Danforth, S.C. (1998) Rutgers University, Piscataway, New Jersey, private communication.

    Google ScholarĀ 

  187. Hilmas, G.E. et al. (1997) Advances in the fabrication of functionally graded materials using extrusion freeform fabrication, in Proc. of The Fourth Intā€™l. Symp. on FGMā€™96, (eds. I. Shiota and Y. Miyamoto), Elsevier Science B.V., Amsterdam, 319ā€“324.

    Google ScholarĀ 

  188. Hilmas, G. (1996) Innovative technique for rapidly prototyping parts of polymers, metals, ceramics, composites, and functionally graded materials, Materials Technology, 11(6), 226ā€“228.

    Google ScholarĀ 

  189. Hilmas, G.E. et al. (1998) Recent developments in extrusion freeform fabrication(EFF) utilizing non-aqueous gel casting formulations, in Proc. Solid Freeform Fabrication Symposium 1996, (eds. H.L. Marcus, J.L. Beaman, J.W. Barlow, D.L. Bourell, and R.H. Crawford), University of Texas, Austin.

    Google ScholarĀ 

  190. Borland, S.W. et al. (1995) Solid freeform fabrication of reticulated structures from biomedical polymers, Therapeutic Medial Devices by 3D Printing Research Summary, June, 1994.

    Google ScholarĀ 

  191. Cannon, W.R. (1989) Transformation toughened ceramics for structural applications, in Structural Ceramics, Treatise on Materials Science and Technology, (ed. J.B. Wachtman), 195ā€“228, Academic Press, San Diego, CA.

    ChapterĀ  Google ScholarĀ 

  192. Yoo, J. et al. (1996) Transformation-toughened ceramic multilayers with compositional gradients, J. Am. Cer. Soc., 81, 21ā€“32.

    ArticleĀ  Google ScholarĀ 

  193. Wu, B.M. et al. (1995) Solid freeform fabrication of drug delivery devices, J. of Controlled Release, 40, 77ā€“87.

    ArticleĀ  Google ScholarĀ 

  194. Ford, R.G. and Stangle, G.C. (1993) Compositionally gradient materials-unconventional composites, in High Temperature Ceramic Matrix Composites, Proc.6th EACM-HTCMC, Bordeaux, (eds. R. Naslain, J. Lamon, and D. Doumeingts), Woodhead Publ. Ltd., 795ā€“811.

    Google ScholarĀ 

  195. Colomban, P. (1996) special contribution to this book.

    Google ScholarĀ 

  196. Colomban, P. and Vendange, V. (1992) Sintering of alumina and mullite prepared by slow hydrolysis of alkoxides, the role of the protonic species and of pore technology, J. Non-Crystalline Solids, 147/148, 245ā€“250.

    ArticleĀ  Google ScholarĀ 

  197. Colomban, P. et al. (1992) French Patent nĀ°2672283, European Patent nĀ°92400235.5, US Patent nĀ°07/830.904.

    Google ScholarĀ 

  198. Colomban, P. (1995) Process for fabricating a ceramic matrix composite incorporating woven fibers and materials with different compositions and properties in the same composite, Materials Technology, 10(5/6), 93ā€“96.

    Google ScholarĀ 

  199. Mouchon, E. and Colomban, Ph. (1996) Microwave absorbent-preparation, mechanical properties and r.f.-microwave conductivity of SiC (and/or mullite) fiber reinforced Nasicon matrix composites, J. Materials Science, 31, 323ā€“34.

    ArticleĀ  CASĀ  Google ScholarĀ 

  200. Colomban, P. (1989) Gel technology in ceramics, glass ceramics and ceramic-ceramic composites, Ceramics International, 15, 23ā€“50.

    ArticleĀ  Google ScholarĀ 

  201. Colomban, P. and Mazerolles, L. (1991) Nanocomposites in mullite ā€” ZrO2 and mullite ā€” TiO2 systems synthesized through alkoxide hydrolysis gel routes, microstructure and fractography, J. Materials Science, 26, 3503ā€“3510.

    ArticleĀ  CASĀ  Google ScholarĀ 

  202. Nagano, T. (1996) special contribution to this book.

    Google ScholarĀ 

  203. Nagano, T., Kato, H., and Wakai, F. (1990) Diffusion bonding of zirconia/alumina composites, J. Am. Ceram. Soc., 73(11), 3476ā€“3480.

    ArticleĀ  CASĀ  Google ScholarĀ 

  204. Nagano, T. and Wakai, F. (1993) Fabrication of ZrO2-Al2O3 functionally gradient material by superplastic diffusion bonding, J. Materials Science, 28(21), 5793ā€“5799.

    ArticleĀ  CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A., Ford, R.G. (1999). Processing and Fabrication. In: Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A., Ford, R.G. (eds) Functionally Graded Materials. Materials Technology Series, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5301-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5301-4_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-60760-8

  • Online ISBN: 978-1-4615-5301-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics