Skip to main content

The Characterization of Properties

  • Chapter
Book cover Functionally Graded Materials

Part of the book series: Materials Technology Series ((MTEC,volume 5))

  • 940 Accesses

Abstract

The technology of Functionally Graded Materials (FGMs) enables the realization of innovative and multiple functions that cannot be achieved with conventional homogeneous materials. Predetermined chemical composition profiles (the spatial distribution of their components) as well as predetermined transitions in their microstructure, are intentionally introduced to perform desired functions. Therefore, in order to use FGMs in practical applications, it is important to characterize their properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Muramatsu, K., Kawasaki, A., and Taya, M. (1990) Fractal analysis of the microstructural transition in P/M functionally gradient materials, in Proc. of The First Int’l. Symp. on FGM’90, Sendai, (eds. M. Yamanouchi, M. Koizumi, T. Hirai, and I. Shiota), FGM Forum, Tokyo, Society for Non-traditional Technology, 53–58.

    Google Scholar 

  2. Kawasaki, A. and Watanabe, R. (1997) Concept and P/M fabrication of functionally gradient materials, Ceramics International, 23, 73–83.

    Article  CAS  Google Scholar 

  3. DeHoff, R.T. (1968) Curvature and the topological properties of interconnected phases, in Quantitative Microscopy, (eds. R.T. DeHoff and F.N. Rhines), McGraw-Hill, New York, 291–325.

    Google Scholar 

  4. Stauffer, D. (1985) Introduction to Percolation Theory, Taylor & Francis, London.

    Book  Google Scholar 

  5. Mandelbrot, B.B. (1982) Fractal Geometry of Nature, W.H. Freeman, San Francisco.

    Google Scholar 

  6. Capasso, F. (1987) Bad-gap engineering and interface engineering, from graded-gap structures to tunable band discontinuities, in Heterojunction Band Discontinuities, (eds. F. Capasso and G. Margaritondo), Elsevier, Amsterdam, 400–450.

    Google Scholar 

  7. Sarker, A. et al. (1997) Electrophoretic forming of functionally-graded barium/strontium titanate ceramics, in Proc. of The Fourth Int’l. Symp. on FGM’96, Tsukuba, (eds. I. Shiota and Y. Miyamoto), Elsevier, Amsterdam, 221–26.

    Google Scholar 

  8. Kawai, T. and Miyazaki, S. (1990) Development of a piezo-ceramic actuator with functionally gradient material, J. Ceram. Soc. Jpn. Int. Ed. 98, 168–172.

    Article  Google Scholar 

  9. Miyazaki, S., Kawai, T., and Aragaki, M. (1991) A piezoelectric pump driven by a flexural progressive wave, IEEE, 283–88.

    Google Scholar 

  10. Kenneth, K.G. and Patarini, V.M. (1970) Thermal expansion of boron fiber-aluminium composites, Metal. Trans., 1, 3431–3435.

    Google Scholar 

  11. Liu, W.H. and Ke, S.J. (1975) Experimental Techniques in Fracture Mechanics, 2, (ed. A.S. Kobayashi), The Iowa State University Press, 111.

    Google Scholar 

  12. Wolf, G.E. and Eselun, A.S. (1977) Thermal expansion of a boron-aluminium tube, J. Comp. Mater., 11, 30–32.

    Article  Google Scholar 

  13. Mizuno, Y., Kawasaki, A., and Watanabe, R. (1995) In-situ measurement of sintering shrinkage in powder composites by digital image correlation method, Powder Metallurgy, 38, 191–195.

    CAS  Google Scholar 

  14. Mizuno, Y., Kawasaki, A., and Watanabe, R. (1995) Measurement of nonuniform sintering shrinkage of functionally graded materials by digital image processing, Metal. Trans. B, B26, 75–79.

    Google Scholar 

  15. Gebhart, B. (1971) Heat Transfer, 2d., (eds. B.J. Clarck and M. McMahon), NY, USA

    Google Scholar 

  16. Araki, N., Makino, A., and Mihara, J. (1992) Measurement and evaluation of the thermal diffusivity of two-layered materials, International Journal of Thermophysics, 13(2), 331–349.

    Article  CAS  Google Scholar 

  17. Araki, N. (1993) How to distinguish between apparent and effective, in Proceedings of the 14 th Japan Symposium on Thermophysical Properties, 14, 229–230.

    Google Scholar 

  18. Kakaç, S. and Yener, Y. (1985) Heat Conduction, 2d., Hemisphere Publishing Corporation, U.S.A.

    Google Scholar 

  19. Kawasaki, A. and Watanabe, R. (1987) Finite element analysis of thermal stress of the metal/ceramic multi-layer composites with controlled composition gradients, J. Japan Inst. Metals, 51, 525–529.

    CAS  Google Scholar 

  20. Brookes, K.J.A. (1982) World Directory and Handbook of Hardmetals, London, An Engineers’ Digest and International Carbide Data.

    Google Scholar 

  21. 3-MOScode, User Manual, (1992) CALCOM SA, Ltd., Lausanne.

    Google Scholar 

  22. Ilschner, B. (1990) Gradient materials by powder metallurgy and by galvanoforming, in Proc. of The First Int’l. Symp. on FGM’90, (eds. M. Yamanouchi, M. Koizumi, T. Hirai, and I. Shiota), Sendai, Japan, 101–106.

    Google Scholar 

  23. Cherradi, N., Dollmeier, K., and Ilschner, B. (1993) PSZ-chrome nickel graded materials, Powder Technology — Thermal Properties, Ceramic Transactions, 34, in Proc. of The Second Int’l. Symp. on FGM’92, (eds. J.B. Holt, M. Koizumi, T. Hirai, and Z.Munir), American Ceramic Society, Westerville, 229–236

    Google Scholar 

  24. Araki, N. et al. (1992) An analytical solution of temperature response in multilayered materials for transient methods, International Journal of Thermophysics, 13(3), 515–538.

    Article  CAS  Google Scholar 

  25. Ishiguro, T. et al. (1993) Transient temperature response in functionally gradient materials, International Journal of Thermophysics, 14(1), 101–121.

    Article  CAS  Google Scholar 

  26. Makino, A. and Araki, N. (1993) Evaluation of the thermal diffusivity of functionally gradient materials, High Temperatures-High Pressures, 25, 545–551.

    CAS  Google Scholar 

  27. Shinohara, Y. et al. Thermal stability of plasma sprayed Ni-Cr-Al-Y/PSZ FGM in uniform and gradient temperature fields, High Temperatures-High Pressures, 25, 255–262.

    Google Scholar 

  28. Aihara, T., Kaji, M., and Igarashi, T. (1990) Numerical analysis of compositional distribution change in functionally gradient materials, J. Japan Inst. Metals, 54, 758–763.

    CAS  Google Scholar 

  29. Fukui, Y. et al. (1994) Young’s modulus determination of functionally gradient Al-Al3Ni material by a resonance method, J. Mater. Sci., 29, 2281–2288.

    Article  CAS  Google Scholar 

  30. Wakashima, K. (1976) Macroscopic mechanical properties of composite materials Part II, Elastic moduli and thermal expansion coefficient, Trans. Jpn. Soc. Comp. Mater., 2–7.

    Google Scholar 

  31. Mihara, T. et al. (1992) Elastic constants of zirconia/stainless steel sintered composite materials measured by a line-focus-beam acoustic microscope, J.Japan Inst. Metals, 56, 321–326.

    CAS  Google Scholar 

  32. Atalar, A. (1979) A physical model for acoustic signature, J. Appl. Phys., 50, 8237–8239.

    Article  CAS  Google Scholar 

  33. Kushibiki, J., Ohkubo, A., and Chubachi, N. (1981) Linearly focused acoustic beams for acoustic microscopy, Electron Lett., 17, 520–522.

    Article  Google Scholar 

  34. Kushibiki, J. and Chubachi, N. (1985) Material characterization by line-focus-beam acoustic microscope, IEEE Trans. Sonics. Ultrason., SU-32, 189–212.

    Article  Google Scholar 

  35. Obata, M., Shimada, H., and Mihara, T. (1990) Stress dependence of leaky surface wave on PMMA by line-focus-beam acoustic microscope, Experimental Mechanics, 30, 32–37.

    Article  Google Scholar 

  36. Viktorov, I. A. (1967) Rayleigh and Lamb Waves, Plenum Press New York, 46.

    Google Scholar 

  37. Lannutti, J. J. (1994) Functionally graded materials, properties, potential and design guidelines, Composites Engineering, 4, 81–94.

    Article  CAS  Google Scholar 

  38. Nakasa, K., Kato, M., and Matsuyoshi, H. (1997) Fabrication of TiB-Ti functionally graded material by spark and resistance sintering and evaluation of the mechanical properties, J. Jpn. Inst. Metals, 61, 311–318.

    CAS  Google Scholar 

  39. Delfosse, D., Cherradi, N., and Ilschner, B. (1995) Influence of residual stresses on the tensile behavior of a Cu-Ni FGM, in Proc. of The Third Int’l Symp. on Structural and Functional Gradient Materials, (eds. B. Ilschner and N. Cherradi), Presses Polytechniques et Universitaires Romandes, Lausanne, 307–313.

    Google Scholar 

  40. Delfosse, D., Kunzi, U. H., and Ilschner, B. (1992) Experimental determination of residual stresses in materials with a one-dimensional gradient of composition, Acta Metallurgica et Materialia, 40, 2219–2224.

    Article  CAS  Google Scholar 

  41. Delfosse, D. (1990) Structural part with a concentration gradient produced by powder metallurgy and properties (Bauteile mit einem konzentrationsgradienten pulvermetallurgische herstellung und eigenschaften), These No. 868, Swiss Federal Institute of Technology, Lausanne.

    Google Scholar 

  42. Liebowitz, H. (ed.) (1968) Fracture-An Advanced Treatise, Vol. II, Mathematical Fundamentals, Pergamon Press, Oxford.

    Google Scholar 

  43. Konda, N. and Erdogan, F. (1990) The mixed mode crack problem in a nonhomogeneous elastic plane, Engineering Fracture Mechanics, 47, 533–545.

    Article  Google Scholar 

  44. Ozturk, M. and Erdogan, F. (1993) The axisymmetric crack problem in a nonhomogeneous medium. ASME J. Appl. Mech., 60, 406–413.

    Article  Google Scholar 

  45. Erdogan, F. (1985) The crack problem for bonded nonhomogeneous materials under antiplane shear loading, ASME J. Appl. Mech., 52, 823–828.

    Article  Google Scholar 

  46. Delale, F. and Erdogan, F. (1988) Interface crack in a nonhomogeneous elastic medium, Int. J. Engng. Sci., 28, 559–568.

    Article  Google Scholar 

  47. Erdogan, F., Kaya, A. C. and Joseph, P. F. (1991) The crack problem in bonded nonhomogeneous materials, ASME J. Appl. Mech., 58, 410–418.

    Article  Google Scholar 

  48. Erdogan, F. and Gupta, G. D. (1971) Layered composites with an interface flaw, Int. J. Solids Structures, 7, 1089–1107.

    Article  Google Scholar 

  49. Cook, T. S. and Erdogan, F. (1972) Stresses in bonded materials with a crack perpendicular to the interface, Int. J. Engng. Sci., 10, 667–696.

    Article  Google Scholar 

  50. Martin, P. A. (1992) Tip behavior for cracks in bonded inhomogeneous materials. J. Engineering Mathematics, 26, 467–480.

    Article  Google Scholar 

  51. Erdogan, F. and Wu, B.H. (1996); Crack problems in FGM layers under thermal stresses, Journal of Thermal stresses, 19, 237–266.

    Article  Google Scholar 

  52. Erdogan, F. (1995) Fracture mechanics of functionally graded materials, J. Composites Engineering, 5, 753–770.

    Article  Google Scholar 

  53. Erdogan, F. and Ozturk, M. (1995) Periodic cracking of functionally graded coatings, Int. J. Engng. Sci., 33, 2179–2195.

    Article  Google Scholar 

  54. Ozturk, M. and Erdogan, F. (1996) Axisymmetric crack problem in bonded materials with a graded interfacial region. Int. J. Solids Structures, 33, 193–217.

    Article  Google Scholar 

  55. Chen, Y.F. and Erdogan, F. (1996) The interface crack problem for a nonhomogeneous coating bonded to a homogeneous substrate, J. Mech. Phys. Solids, 44, 771–787.

    Article  CAS  Google Scholar 

  56. Hirano, K. and Suzuki, T. (1990) Fracture mechanics of functionally gradient materials at an ultra-high temperature, in Proc. of The First Int’l. Symp. on FGM’90, (eds. M. Yamanouchi, M. Koizumi, T. Hirai, and I. Shiota), Sendai, Japan, FGM Forum, Society for Non-traditional Technology, Tokyo, 313–319.

    Google Scholar 

  57. Hirano, K. (1994) Toughening mechanism for ceramics by a ductile metallic phase, J. Materials Science Letters, 13, 1219–1221.

    Article  Google Scholar 

  58. Chan, K. S. (1992) Influence of microstructure on intrinsic and extrinsic toughening in an alpha-two titanium aluminide alloy, Metal, Trans., 23A, 183–199.

    CAS  Google Scholar 

  59. Miyamoto, Y. et al. (1992) HIP in SHS technology, Int. J. Self-Propagating High-Temperature Synthesis 1, 147–154.

    CAS  Google Scholar 

  60. Tanihata, K. et al. (1993) Fabrication of Cr3C2/Ni functionally gradient materials by gas-pressure combustion sintering, Ceramic Transactions, 34, in Proc. of The Second Int’l. Symp. on FGM’92, (eds. J. B. Holt, M. Koizumi, T. Hirai, and Z. A. Munir), American Ceramic Society, Westerville, 361–368.

    Google Scholar 

  61. Munz, D. G., Shanon, J. L., Jr., and Budsey, R. T. (1980) Fracture toughness calculation from maximum load in four point bend tests of chevron notch specimens, Int. J. Fract., 16, R137–R141.

    Article  Google Scholar 

  62. Williamson, L. R., Rabin, H. B., and Byerly, G. (1993) Residual stress in joint ceramic-metal structures: FGM studies of interlayer and creep effects, Int. J. Fract., 16, 315–322.

    Google Scholar 

  63. Kokini, K. and Takeuchi, R. Y. (1994) Initiation of surface cracks in multilayer ceramic thermal barrier coatings under thermal loads, Material Science and Engineering, A189, 301–309.

    Article  CAS  Google Scholar 

  64. Blumm, M., Dollmeier, K., and Ilschner, B. (1995) Experimental investigation of fatigue crack propagation in room temperature bending tests with Cu-Ni graded alloys, in Proc. The Third Int’l. Symp. on Structural and Functional Gradient Materials, (eds. B. Ilschner and N. Cherradi), Presses Polytechniques et Universitaires Romandes, Lausanne, 315–320.

    Google Scholar 

  65. Delfosse, D. and Ilschner, B. (1992) Pulvermetallurgische herstellung von gradientenwerkstoffen, Mat. Wiss und Werkstofftech., 23, 235–240.

    Article  CAS  Google Scholar 

  66. Shimada, M., Yoshii, T. and Akiyama, S. (1991) Ultrasonic Testing of Thermal Shock Damage on Plasma Sprayed FGM Coating, in Proc. of 4th Domestic Symposium on FGMs, FGM Forum Japan, 31–35.

    Google Scholar 

  67. Nishimori, H., Hayakawa, Y., and Nonaka, T. (1991) Nondestructive evaluation of functionally gradient materials using ultrasound (2), in Proc. of 4th Domestic Symposium on FGMs, FGM Forum Japan, 53–60.

    Google Scholar 

  68. Makino, A., Araki, N., and Ishiguro, T. (1993) Transient temperature response in FGM for step-or pulse wise heating, Ceramic Transactions, 34, in Proc. of The Second Int’l. Symp. on FGM’92, (eds. J.B. Holt, M. Koizumi, T. Hirai, and Z.A. Munir), American Ceramic Society, Westerville, 305–312.

    Google Scholar 

  69. Saito, M. et al. (1990) Acoustic emission study on stress-induced transformation and microfracture in zirconia and metal fiber/zirconia composites, in Proc. of The 10th International Acoustic Emission Symposium, Sendai, 97–104.

    Google Scholar 

  70. Takahashi, H. and Hashida, T. (1990) Development of an evaluation method of functionally gradient materials, Japan Soc. Mech. Eng., Intern. J., Series I, 33, 281–287.

    Google Scholar 

  71. Kawasaki, A. and Watanabe, R. (1988) Powder metallurgical fabrication of the thermal stress relief-type of functionally gradient materials, in Proc. of Int. Conf. on Sintering’87 Tokyo, (eds. S. Somiya et al..), Elsevier, London, 2, 1197–1202.

    Google Scholar 

  72. Nicholas, G.M. and Crispin, M.R. (1982) Diffusion bonding stainless steel to alumina using alminium interface, J. Mat. Sci., 17, 3347–3360.

    Article  CAS  Google Scholar 

  73. Faber, T.K., Huang, D.M., and Evans, G.A. (1981) Quantitative studies of thermal shock in ceramics based on a novel test technique. J. Am. Ceram. Soc., 64, 296–301.

    Article  CAS  Google Scholar 

  74. Schneider, A.G. and Petzow, G. (1991) Thermal shock testing of ceramics- a new testing method, J. Am. Ceram. Soc., 74, 98–102.

    Article  CAS  Google Scholar 

  75. Watanabe, R. and Kawasaki, A. (1991) Recent development of functionally gradient materials for special application to space plane, in Proc. of Symp. on Composite Materials of ICAM 91, Strasbourg, France, 197–208.

    Google Scholar 

  76. Niino, M., Hirai, T., and Watanabe, R. (1987) Functionally gradient material — high temperature use for space rocket, J. Japan Society of Composite Materials, 13 (6) 257–264.

    Article  Google Scholar 

  77. Kawasaki, A. and Watanabe, R. (1987) Finite element analysis of thermal stress of the metal/ceramic multi-layer composites with controlled composition gradients, J. Japan Inst. Metals, 51, 525–529.

    CAS  Google Scholar 

  78. Kawasaki, A. and Watanabe, R. (1993) Fabrication of disk-shaped functionally gradient materials by hot pressing and their thermomechanical performance, in Ceramic Transactions, 34, Proc. of The Second Int’l. Symp. on FGM’92, (eds. J.B. Holt, M. Koizumi, T. Hirai, and Z.A. Munir), Westerville, Am. Ceram. Soc., 157–164.

    Google Scholar 

  79. Kawasaki, A. and Watanabe, R. (1992) Thermal shock fracture mechanism of metal/ceramic functionally gradient materials, in Proc. Intern. Workshop on Thermal Shock and Thermal Fatigue Behavior of Advanced Ceramic, Schloss Ringberg, (eds. G. Petzow and G.A. Schneider), Springer Science+Business Media New York, Netherlands, (1993), 509–520.

    Google Scholar 

  80. Watanabe, R., Kawasaki, A., and Takahashi, H. (1991) Mechanics and mechanisms of damage in composites and multi-materials, ESISII (ed. D. Baptiste), Mechanical Engineering Publications, London, 285–289.

    Google Scholar 

  81. Kawasaki, A. and Watanabe, R. (1990) Microstructural designing and fabrication of disk shaped functionally gradient material by powder metallurgy, J. Japan Soc. Powder and Powder Metallurgy, 37, 253–256.

    Article  CAS  Google Scholar 

  82. Watanabe, R. and Kawasaki, A. (1989) The relation between microstructural transition and material properties in sintered functionally gradient material, in Proc. 3rd Domestic Symposium on FGMs, Tokyo, Sept., FGM Forum Japan, 35–48.

    Google Scholar 

  83. Kawasaki, A. and Watanabe, R. (1997) Concept and P/M fabrication of functionally gradient materials, Ceramic International, 23, 73–83.

    Article  CAS  Google Scholar 

  84. Takahashi, H. and Hashida, T. (1990) Development of an evaluation method for functionally gradient materials. Japan Soc. Mech. Eng., Intern. J., Series I, 33, 281–287.

    Google Scholar 

  85. Takahashi, H. et al. (1994) Oxidation/thermal shock fracture evaluation procedure by plasma-arc heating for functionally gradient materials, in Proc. 3rd IUMRS Intern. Conference on Advanced Materials, Tokyo, Japan, Aug. 31-Sept. 4, 16B, 1291–1294.

    Google Scholar 

  86. Cherradi, N., Dollmeier, K., and Ilschner, B. (1993) PSZ-chrome nickel graded materials. Powder Technology-Thermal Properties, 229–236.

    Google Scholar 

  87. Kawasaki, A. and Watanabe, R. (1992) Thermal shock fracture mechanism of metal/ceramic functionally gradient materials, in Proc. Intern. Workshop on Thermal Shock and Thermal Fatigue Behavior of Advanced Ceramic, Schloss Ringberg, (eds. G. Petzow and G.A. Schneider), Springer Science+Business Media New York, Netherlands, (1993), 509–520.

    Google Scholar 

  88. Hashida, T. et al.. (1994) Burner heating method for determining thermal shock resistance of ceramic coatings for gas turbine rotor blades, in Proc. of 3rd IUMRS Intern. Conference on Advanced Materials, Tokyo, Japan, Aug. 31-Sept. 4, 16B, 1291–1294.

    Google Scholar 

  89. Yanagisawa, N., Sata, N., and Sanada, N. (1990) Fabrication of TiB2-Cu functionally gradient material by SHS process, in Proc. of 3rd IUMRS Intern. Conference on Advanced Materials, 179–184.

    Google Scholar 

  90. Miyamoto, Y. et al. (1990) Gas-pressure combustion sintering of TiC-Ni FGM, in Proc. of 3rd IUMRS Intern. Conference on Advanced Materials, 257–262.

    Google Scholar 

  91. Shimoda, N. et al. (1990) Production of functionally gradient materials by applying low pressure plasma spray, in Proc. of 3rd IUMRS Intern. Conference on Advanced Materials, 151–156.

    Google Scholar 

  92. Uemura, S., Sohda, Y., and Kude, Y. (1990) SiC/C functionally gradient material prepared by chemical vapor deposition, in Proc. of 3rd IUMRS Intern. Conference on Advanced Materials, 237–242.

    Google Scholar 

  93. Kumakawa, A. et al. (1990) Experimental study on thermo-mechanical properties of FGMs at high heat fluxes, in Proc. of 3rd IUMRS Intern. Conference on Advanced Materials, 291–295.

    Google Scholar 

  94. Fujii, K. et al. (1992) Functionally graded material of silicon carbide and carbon as advanced oxidation-resistance graphite, J. Nucl. Mater., 187, 204–208.

    Article  CAS  Google Scholar 

  95. Yamamoto, O. et al. (1993) Preparation of carbon materials with SiC-concentration gradient by silicon impreg durations and its oxidation behavior, J. Eur. Ceram. Soc., 12, 435–440.

    Article  CAS  Google Scholar 

  96. Kude, Y. (1993) Carbon/carbon composites using high performance carbon fibers, in Proc. of 4th Symp. on High-P erformance Materials for Severe Environments, 1–12.

    Google Scholar 

  97. Kawai, C., et al. (1990) Oxidation resistant coating with TiC-SiC gradient composition on carbon fiber reinforced composites by CVD, in Proc. of The First Int’l. Symp. on FGM’90, (eds. M. Yamanouchi, M. Koizumi, T. Hirai, and I. Shiota), FGM Forum, Tokyo, Society for Non-traditional Technology, 77–82.

    Google Scholar 

  98. Sasaki, M., Hiratani, T., and Hirai, T. (1993) Corrosion resistance of an SiC/TiC FGM-coated stainless steel in a Br2-O2-Ar atmosphere, in Ceramic Transactions, 34, Proc. Second Int’l. Symp. on FGM’92, (eds. J.B. Holt, M. Koizumi, T. Hirai, and Z.A. Munir) American Ceramic Society, Westerville, 369–376.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A., Ford, R.G. (1999). The Characterization of Properties. In: Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A., Ford, R.G. (eds) Functionally Graded Materials. Materials Technology Series, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5301-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5301-4_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-60760-8

  • Online ISBN: 978-1-4615-5301-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics