Skip to main content

Part of the book series: Materials Technology Series ((MTEC,volume 5))

Abstract

With the advent of powerful computers and robust software, computational modeling has emerged as a very informative and cost effective tool for materials design and analysis. Modeling often can both eliminate costly experiments and provide more information than can be obtained experimentally. Computational modeling has clearly played an important role in FGM research to date, and because of the considerable complexity involved, is expected to play an even greater role in future developments. This chapter introduces some of the common approaches used in modeling FGMs, identifies the major difficulties involved, and, it is hoped, provides useful guidance for future simulation efforts. It focuses mainly on continuum models of the bulk response of FGMs due to thermal or mechanical loading.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beardsley, M.B. (1997) Functionally graded thermal barrier coatings for diesel engines, Symposium on Functionally Graded Materials, Fall Meeting of the Materials Research Society Meeting, December 1–5, 1997, Boston, MA.

    Google Scholar 

  2. Malvern, L.E. (1969) Introduction to the mechanics of a continuous medium, Prentice Hall, Inc., Englewood Cliffs, N.J.

    Google Scholar 

  3. ABAQUS Computer Program (1997) Hibbitt, Karlsson & Sorenson Inc., Pawtucket, RI.

    Google Scholar 

  4. Dao, M. et al. (1997) Acta Mater, 45, 3265.

    Article  CAS  Google Scholar 

  5. Weissenbek, E., Pettermann, H.E., and Suresh, S. (1997) Acta Mater, 45, 3401.

    Article  CAS  Google Scholar 

  6. Hashin, Z. (1983) J. Appl. Meek., 50, 481.

    Article  Google Scholar 

  7. Torquato, S. (1991) Appl. Mech. Rev., 44 (2), 37.

    Article  Google Scholar 

  8. Nan, C.W. (1993) Progress in Materials Science, 37, 1.

    Article  CAS  Google Scholar 

  9. Voight, W. (1889) Wied. Ann., 38, 573.

    Article  Google Scholar 

  10. Reuss, A. (1929) ZAMM, 9, 49.

    Article  CAS  Google Scholar 

  11. Cho, K. and Gurland, J. (1988) Met. Trans. A, 19A, 2027.

    Article  CAS  Google Scholar 

  12. Fan, Z., Tsakiropoulos, P., and Miodownik, A.P. (1994) J. Mater. Sci., 29, 141.

    Article  CAS  Google Scholar 

  13. Hashin, Z. and Shtrikman, S. (1963) J. Mech. Phys. Solids, 11, 127.

    Article  Google Scholar 

  14. Hashin, Z. and Shtrikman, S. (1962) J. Appl. Phys., 33, 3125.

    Article  CAS  Google Scholar 

  15. Kerner, E.H. (1956) Proc. Phys. Soc., B69, 808.

    Google Scholar 

  16. Taki, M. et al. (1990) A fundamental study on the application of FGM to high-temperature rotating members, in Proc. of The First Int’l. Symp. on FGM’90, (eds. M. Yamanouchi et al.), Functionally Gradient Materials Forum, Toranomom, Minato-ku, Tokyo, Japan, 353–358.

    Google Scholar 

  17. Wakashima, K. and Tsukamoto, H. (1992) ISIJ International, 32, 883.

    Article  CAS  Google Scholar 

  18. Eshelby, J.D. (1957) Proc. Royal Soc. London, 241, 376.

    Article  Google Scholar 

  19. Mori, T. and Tanaka, K. (1973) Acta Metall., 21, 571.

    Article  Google Scholar 

  20. Ravichandran, K. (1994) J. Am. Ceram. Soc., 77[5], 1178.

    Article  Google Scholar 

  21. Aboudi, J., Pindera, M., and Arnold, S. (1996) Int. J. Solids Structures, 33[7], 931.

    Article  Google Scholar 

  22. Wilt, T.E. and Arnold, S.M. (October 1994) Micromechanics Analysis Code, NASA Technical Memorandum 106706.

    Google Scholar 

  23. Zuiker, J. and Dvorak, G. (1994) Composites Engineering, 4, 19.

    Article  Google Scholar 

  24. Suresh, S. and Mortensen, A. (1998) Fundamentals of Functionally Graded Materials, IOM Communications Ltd., London.

    Google Scholar 

  25. Williamson, R.L., Rabin, B.H., and Drake, J.T. (1993) J. Appl. Phys., 74, 1310.

    Article  CAS  Google Scholar 

  26. Fischmeister, H. and Karlsson, B. (1977) Z. Metallkde, 69, 311.

    Google Scholar 

  27. Hirano, T., Teraki, J., and Yamada, T. (1990) On the design of functionally gradient materials, in Proc. of The First Int’l. Symp. on FGM’90, (eds. M. Yamanouchi et al.), Functionally Gradient Materials Forum, Toranomom, Minato-ku, Tokyo, Japan, 5–10.

    Google Scholar 

  28. Zhai, P.C., Jiang, C.R., and Zhang, Q.J. (1993) Application of three-phase micromechanical theories to ceramic/metal functionally gradient materials, in Ceramic Transactions 34, Proc. Second Int’l. Symp. on FGM’92, (eds. J.B. Holt et al.), The American Ceramics Society, Westerville, OH, 449–456.

    Google Scholar 

  29. Larker, R. and Beckman, T. (1995) Compositional gradation between silicon nitride and superalloys using Si3N4/TiN CMC and TiN/Ni MMC layers, in Proc. Third Int’l. Symp. on Structural and Functional Gradient Materials, (eds. B. Ilschner and N. Cherradi), Presses polytechniques et universitaires romandes, Lausanne, Switzerland, 495–501.

    Google Scholar 

  30. Bruck, H.A. and Rabin, B.H. (1999) An Evaluation of Rule-of-Mixtures Predictions of Thermal Expansion in Powder Processed Ni-Al2O3 Composites, J. Amer. Ceramic Soc., in press.

    Google Scholar 

  31. Takemuma, M. et al. (1990) Proceedings, The First International Symposium on FGM, (eds. M. Yamanouchi et al.), Functionally Gradient Materials Forum, Toranomom, Minato-ku, Tokyo, Japan, 97–100.

    Google Scholar 

  32. Kawai, C. et al. (1990) Oxidation resistant coating with TiC-SiC gradient composition on carbon fiber reinforced composites by CVD, in Proc. of The First Int’l. Symp. on FGM’90, (eds. M. Yamanouchi et al.), Functionally Gradient Materials Forum, Toranomom, Minato-ku, Tokyo, Japan, 77- 82.

    Google Scholar 

  33. Takemuma, M. et al.. (1993) Evaluation of thermal and mechanical properties of functionally gradient material of ZrO2-Ni system, in Ceramic Transactions 34, Proc. Second Int’l Symp. on FGM’92, (eds. J.B. Holt et al.), The American Ceramics Society, Westerville, OH, 271–278.

    Google Scholar 

  34. Matsumura, S. et al. (1993) A technology to form FGMs by composite electroforming, in Ceramic Transactions 34, Proc. Second Int’l Symp. on FGM’92, (eds. J.B. Holt et al.), The American Ceramics Society, Westerville, OH, 331–338.

    Google Scholar 

  35. Igari, T. et al. (1990) Mechanical properties of functionally gradient material for fast breeder reactor, in Proc. of The First Int’l. Symp. on FGM’90, (eds. M. Yamanouchi et al.), Functionally Gradient Materials Forum, Toranomom, Minato-ku, Tokyo, Japan, 209–213.

    Google Scholar 

  36. Akama, S. (1997) Mechanical and thermal properties of PSZ/Ni-base superalloy composite, in Proc. of The Fourth Int’l. Symp. on FGM’96, (eds. I. Shiota and Y. Miyamoto), Elsevier Science B.V., Amsterdam, The Netherlands, 451–456.

    Google Scholar 

  37. Jedamzik, R. and Neubrand, A. (1997) Ceramics Group, TU-Darmstadt, Germany, private communication.

    Google Scholar 

  38. Bruck, H.A. and Rabin, B.H. (1998) Evaluating Microstructural and Damage Effects in Rule-of-Mixtures Predictions of the Mechanical Properties of Ni-Al2O3 Composites for Use in Modeling Functionally Graded Materials, J. Mater. Sci., 33, 1–11.

    Google Scholar 

  39. Zhu, J.C. et al. (1997) Mechanical performance of ZrO2-Ni functionally graded material by powder metallurgy, in Proc. Fourth Int’l. Symp. on FGM’96, (eds. I. Shiota and Y. Miyamoto), Elsevier Science B.V., Amsterdam, The Netherlands, 203–208.

    Google Scholar 

  40. Biner, S.B. (1997) Engineering Fracture Mechanics, 56, 657.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A., Ford, R.G. (1999). Modeling and Design. In: Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A., Ford, R.G. (eds) Functionally Graded Materials. Materials Technology Series, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5301-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5301-4_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-60760-8

  • Online ISBN: 978-1-4615-5301-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics