Skip to main content

Optical Amplifiers

  • Chapter
  • 235 Accesses

Part of the book series: Telecommunication Technology and Applications Series ((TTAP))

Abstract

In the latter half of the 1980s there was a significant change in the telecommunications industry. Optical fiber networks were installed throughout the developed world and submarine cables containing optical fibers were deployed to link continents. This great mutation in the fundamental technology used in long-haul transmission systems was induced by several advantages of optical fibers. To make better use of their potential, it was necessary to improve receiver sensitivities and to develop practical wavelength division multiplexing (WDM) techniques to combine channels (Chapter 11).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Saitoh and T. Mukai, Travellingwave semiconductor laser amplifiers, in Coherence, Amplification, and Quantum Effects in Semiconductor Lasers, Ed. Y. Yamamoto, John Wiley, New York (1991).

    Google Scholar 

  2. M. Gustayssonet al.Monolithically integrated 4x4 InGaAsP/InP laser amplifier gate switch arrays,Electron. Lett.,282223–2224 (1992).

    Article  Google Scholar 

  3. G. Metivier and M.A. Ali, Simulation of multi-channel AM-VSB CATV optical link employing semiconductor optical amplifier as external modulatorIEEE Photon. Technol. Lett.8, 122–124 (1996).

    Article  Google Scholar 

  4. R. Schnabelet al.Polarization insensitive frequency conversion of a 10-channel OFDM signal using four-wave mixing in a semiconductor laser amplifier,IEEE Photon. Technol. Leu.,656–58 (1994).

    Article  Google Scholar 

  5. N.A. Olsson, G.P. Agrawal and K.W. Wecht, 16 Gb/s, 70 km, pulse transmission by simultaneous dispersion and loss compensation with 1.5 µm optical amplifiersElectron. Lett.25603–605 (1989).

    Article  Google Scholar 

  6. B.W. Hakki and T.L. PaoliJ. Appl. Phys. 461299–1306 (1975).

    Article  Google Scholar 

  7. Y. YamamotoIEEE J. Quantum Electron.QE161047–1052 (1980).

    Article  Google Scholar 

  8. R.M. Jopsonet al.,Electron. Lett. 221105–1107 (1986).

    Article  Google Scholar 

  9. T. Saitoh and T. MukaiOpt. Quantum Electron. 21S47–S58 (1989).

    Article  Google Scholar 

  10. G. Grosskopf, R. Ludwig, R.G. Waarts, and H.G. WeberElectron. Lett. 231387–1388 (1987).

    Article  Google Scholar 

  11. N.A. OlssonElectron. Lett.241075–1076 (1988).

    Article  MathSciNet  Google Scholar 

  12. Y. YamamotoIEEE J. Quantum Electron.QE1936–36 (1983).

    Google Scholar 

  13. T. Mukai and Y. YamamotoIEEE J. Quantum Electron.QE171028–1034 (1981).

    Article  Google Scholar 

  14. A.E. SiegmanLasersOxford University Press, Oxford (1986).

    Google Scholar 

  15. T. Saitoh and T. MukaiIEEE J. Quantum Electron.QE231010–1020 (1987).

    Article  Google Scholar 

  16. G. Eisensteinet al.,Appl. Phys. Lett. 54454–456 (1989).

    Article  Google Scholar 

  17. I.D. Henning, M.J. Adams, and J.V. CollinsIEEE J. Quantum Electron. QE21609–613 (1985); errataibid. QE21 1973 (1985).

    Google Scholar 

  18. T. Mukai, K. Inoue and T. SaitohAppl. Phys. Lett. 51381–383 (1987).

    Article  Google Scholar 

  19. K. Shimoda, H. Takahashi, and C.H. Townes, fluctuation in amplification of quanta with application to maser amplifiersJ. Phys. Soc. Jpn. 12, 686–700 (1957).

    Article  Google Scholar 

  20. D. MarcuseEngineering Quantum ElectrodynamicsHarcourt Brace Jovanovich, New York (1970).

    Google Scholar 

  21. G.P. Agrawal and N.A. Olsson, Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiersIEEE J. Quantum Electron.QE252297–2306 (1989).

    Article  Google Scholar 

  22. G.P. Agrawal and N.K. DuttaLong-Wavelength Semiconductor LasersCh. 2, Van Nostrand Reinold, New York (1986).

    Book  Google Scholar 

  23. L.M. Frantz and J.S. Nodvik, Theory of pulse propagation in a laser amplifierJ. App!. Phys. 342346–2349 (1963).

    Article  Google Scholar 

  24. A. Iesevgi and W.E. Lamb, Jr., Propagation of light pulses in a laser amplifierPhys. Rev. 185517–545 (1969).

    Article  MathSciNet  Google Scholar 

  25. G.P. AgrawalNonlinear Fiber OpticsAcademic Press, Boston MA (1989).

    Google Scholar 

  26. G.P. Agrawal and M.J. Potasek, Effect of frequency chirping on the performance of optical communication systemsOpt. Lett. 11318–320 (1986).

    Article  Google Scholar 

  27. M. Montecchiet al.Gain and noise in rare-earth-doped optical fibers, J. Opt. Soc. Amer.B, 8134–141 (1991).

    Article  Google Scholar 

  28. S. Betti, G. De Marchis, and E. IannoneCoherent Optical Communications SystemsJohn Wiley, New York (1995).

    Google Scholar 

  29. E. Desurvire and R.J. Simpson, Amplification of spontaneous emission in erbium-doped single-mode fiber amplifiersIEEE/OSA J. Lightwave Technol.LT7, 835–845 (1989).

    Article  Google Scholar 

  30. P.R. Morkel and L.I. Laming, Theoretical modeling of erbium doped fiber amplifiers with excited state absorptionOpt. Lett. 141062–1064 (1989).

    Article  Google Scholar 

  31. C.R. Giles, E. Desurvire, and J.R. Simpson, Transient gain and crosstalk in erbium doped fibre amplifiersOptics Lett. 14 880–882 (1989).

    Article  Google Scholar 

  32. K. Kikuchi, Generalized formula for optical amplifiers noise and its application to Erbium doped fibre amplifiersElectron. Lett. 261851–1853 (1990).

    Article  Google Scholar 

  33. C.R. Giles and E. Desurvire, Modeling erbium doped fiber amplifiersIEEE/ OSA J. Lightwave Technol.LT9271–283 (1991).

    Article  Google Scholar 

  34. M. Peroni and M. Tamburrini, Gain in erbium doped fiber amplifiers: a simple analytical solution for the rate equationsOpt. Lett. 15842–844 (1990).

    Article  Google Scholar 

  35. F. Matera, M. Romagnoli, M. Settembre, and M. Tamburrini, Evaluation of chromatic dispersion in Ermium doped fiber amplifiersElectron. Lett. 271867–1969 (1991).

    Article  Google Scholar 

  36. A. YarivQuantum Electronics2nd ed., Ch. 9, Wiley, New York (1989).

    Google Scholar 

  37. P.C. Becker, A. Lidgard, J.R. Simpson, and N.A. Olsson, Erbium doped fiber amplifier pumped in the 950–1000 nm regionIEEE Photon. Technol. Lett.PTL235–37 (1990).

    Article  Google Scholar 

  38. A. BjarklevOptical Fiber Amplifier: Design and System ApplicationArtech House, Norwood MA (1993).

    Google Scholar 

  39. Y. Durteste, M. Monerie, J.Y. Allain, and H. Poignant, Amplification and lasing at 1.3 µm in Praseodymium-doped fluorozirconate fibresElectron. Lett. 27626–628 (1991).

    Article  Google Scholar 

  40. S.F. Carter, D. Szebestaet al.Amplification at 1.3 µm in a Pr3+-doped single-mode fluorozirconate fibres,Electron. Lett. 27628–629 (1991).

    Article  Google Scholar 

  41. Y. Ohishi, T. Kanamori, T. Nishi and S. Takahashi, A high gain, high output saturation power Pr3+-doped fluoride fiber amplifier operating at 1.3 µmIEEE Photon. Technol. Lett. 3715–717 (1991).

    Article  Google Scholar 

  42. Y. Miyajima, T. Sugawa and Y. Fukasaka, 38.2 dB amplification at 1.31 µm and the possibility of 0.98 µm pumping in Pr3+-doped fluoride fiberTechnical Digest Optical Amplifiers and their Applications OAA ‘81Snowmass, CO, post-deadline paper PD 1 (1991).

    Google Scholar 

  43. B. Pedersen, W.J. Miniscalco, and R.S. Quimby, Optimization of Pr3+-ZBLAN fiber amplifiersIEEE Photon. Technol. Lett. 4446–448 (1992).

    Article  Google Scholar 

  44. S.F. Carter, R. Wyatt, D. Szebesta, and S.T. Davey, Quantum efficiency and amplification at 1.3 µm in a Pr3+-doped fluorozirconate single-mode fiber, inProceding of the 17th European Conference on Optical Communication ECOC ‘81paper MOA2–3, pp. 21–24 (1991).

    Google Scholar 

  45. J.Y. Allain, M. Monerie, and H. Poignant, Energy transfer in Pr3+/Yb3+-doped fluorozirconate fibresElectron. Lett. 271012–1014 (1991).

    Article  Google Scholar 

  46. Y. Ohishiet al.Gain characteristics of Pr3+/Yb3+ codoped fluoride fibre for 1.3 µm amplification,IEEE Photon. Technol. Lett. 3990–992 (1991).

    Article  Google Scholar 

  47. Y. Miyajima, Progress in 1.3 µm fluoride fiber amplifiersTechnical Digest of Optical Amplifiers and their Applications OAA ‘82Santa Fe NM, invited paper WB1, pp. 4–7 (1992).

    Google Scholar 

  48. Y. Miyajima, T. Sugawa, and T. Fukasaku, 38.2 dB amplification at 1.31 µm and the possibility of 0.98 µm pumping in Pr3+-doped fluoride fiberElectron. Lett. 27 1706–1707 (1991).

    Article  Google Scholar 

  49. H. Zaremet al.High-power single-mode InGaAs lasers for pumping praseodymium-doped fiber amplifiers,Proc. OFC ‘82San Jose CA, poster paper WL7, p. 160 (1992).

    Google Scholar 

  50. M. Shimuzuet al., 1.3 µm band Pr-doped fluoride fiber amplifier module pumped by laser diodes,Technical Digest of Optical Amplifiers and their Applications OAA ‘82Santa Fe NM, postdeadline paper PD3 (1992).

    Google Scholar 

  51. T. Whitley, R. Wyatt, D. Szebesta, and S. Davey, High output power from an efficient Praseodymium doped fibre amplifierTechnical Digest of Optical Amplifiers and their Applications OAA ‘82Santa Fe NM, paper WB2 (1992).

    Google Scholar 

  52. T. Whitleyet al.Quarter Watt output at 1.3 µm from a praseodymium doped fluoride fibre amplifier pumped with a diode-pumped Nd:YLF laser,Technical Digest of Optical Amplifiers and their Applications OAA ‘82Santa Fe NM, postdeadline paper PD4, pp. 8–11 (1992).

    Google Scholar 

  53. T. Sugawa, and Y. Miyajima, Noise characteristics of Pr3+-doped fluoride fibre amplifierElectron. Lett. 28246–247 (1992).

    Article  Google Scholar 

  54. R. Lobbettet al.System characterization of high gain and highsaturated output power, Pr3+-doped fluorozirconate fibre amplifier at 1.3µm Electron. Lett. 271472–1474 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sabella, R., Lugli, P. (1999). Optical Amplifiers. In: High Speed Optical Communications. Telecommunication Technology and Applications Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5275-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5275-8_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7406-0

  • Online ISBN: 978-1-4615-5275-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics