Skip to main content

Long-Haul Optical Communications

  • Chapter
High Speed Optical Communications

Part of the book series: Telecommunication Technology and Applications Series ((TTAP))

  • 222 Accesses

Abstract

The advent of EDFAs has had a profound impact on the design, operation and performance of optical communications. In optical networks they give a big contribution to transparency. In long-haul optical transmission their impact is even more evident, since costs and reliability can be considerably improved by adopting EDFAs instead repeaters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Trischittaet al.The TAT-12/13 cable network,IEEE Commun. Mag. 34 24–28, (199&).

    Google Scholar 

  2. N.S. Bergano and C.R. Davidson, Wavelength division multiplexing in long-haul transmission systems141299–1308 (1996).

    Google Scholar 

  3. A.R. Chraplyvy, A.H. Gnauck, R.W. Tkach, and R.M. Derosier, 8 x 10 Gb/s transmission through 280 km of dispersion-managed fiberIEEE Photon. Technol. Lett. 5, (1993).

    Google Scholar 

  4. N.S. Berganoet al.40 Gb/s WDM transmission of eight 5 Gb/s data channels over transoceanic distances using the conventional NRZ modulation format, inProc. OFC ‘85 San Diego CA, paper PD19 (1995).

    Google Scholar 

  5. A.H. Gnaucket al.Transmission of 820 Gb/s channels over 232 km of conventional fiber, inProc. OFC ‘85 San Diego CA, paper PD23 (1995).

    Google Scholar 

  6. C.R. Giles and E. Desurvire, Propagation of signal and noise in concatenated erbium-doped fiber amplifiersIEEE J. Lightwave Technol. 9, (1991).

    Google Scholar 

  7. E. Lichtmann, Performance degradation due to polarization dependent gain and loss in lightwave systems with optical amplifiersElectron. Lett. 29, (1993).

    Google Scholar 

  8. F. Bruyere and O. Audouin, Penalties in long-haul optical amplifier systems due to polarization dependent loss and gainIEEE Photon. Technol. Lett. 6, (1994).

    Google Scholar 

  9. N.S. Bergano, V.J. Mazurczyk, and C.R. Davidson, Polarization hole-burning in erbium-doped fiber-amplifier transmission systems, inProc. ECOC ‘84Florence, Italy (1994).

    Google Scholar 

  10. C.R. Giles, E. Desurvire, and Simpson, Transient gain and crosstalk in erbium-doped fiber amplifierOpt. Lett. 14, (1989).

    Google Scholar 

  11. N.S. Bergano, The time dynamics of polarization hole-burning in an erbium-doped fiber amplifierin Tech. Dig. OFC ‘84San Jose CA, paper FF4 (1994).

    Google Scholar 

  12. E. Lichtmann, Limitations imposed by polarization-dependent gain and loss on all-optical ultra-long communication systemsIEEE J. Lightwave Technol. 13, (1995).

    Google Scholar 

  13. M.G. Taylor and S.J. Penticost, Improvement in performance of long haul EDFA link using high frequency polarization modulationElectron. Lett. 30, (1994).

    Google Scholar 

  14. H.A. Haus, Optical fiber solitons, their properties and usesProc. IEEE 81,970–983 (1993).

    Article  Google Scholar 

  15. H.A. Haus and W.S. Wong, Solitons in optical communications, Rev. Mod. Phys.68423–444 (1996).

    Article  Google Scholar 

  16. A.D. Elliset al.Nonlinear Propagation Effects, inHigh capacity optical transmissions explainededited by D.M. Spirit and M.J. O’Mahony, John Wiley, New York (1995).

    Google Scholar 

  17. J.P. Gordon, Interaction forces mong solitons in optical fibersOpt. Lett. 8,596–598 (1983).

    Article  Google Scholar 

  18. V.I. Karpman and V.V. Solov’ev, A perturbational approach to the two soliton system, Physica D3487–502 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  19. F.M. Mitschke and L.F. Mollenauer, Experimental observation of interaction forces between solitons in optical fibersOpt. Lett. 12,355–357 (1987).

    Article  Google Scholar 

  20. H. Kubota and M. Nakazawa, Long distance optical soliton transmission with lumped amplifiersIEEE J. Quantum Electron. 26, 692–700 (1990).

    Article  Google Scholar 

  21. K.J. Blow and N.J. Doran, Average soliton dynamics and the operation of soliton systems with lumped amplifiersIEEE Photon. Technol. Lett. 3,369–371 (1991).

    Article  Google Scholar 

  22. A.D. Elliset al.5 Gb/s soliton propagation over 350 km with large periodic dispersion coefficient perturbations using erbium doped fibre amplifier repeaters,Electron. Lett. 27878–879 (1991).

    Article  Google Scholar 

  23. J.P. Gordon and H.A. Haus, Random walk of coherently amplified solitons in optical fiber transmissionOpt. Lett. 11, 665–667 (1986).

    Article  Google Scholar 

  24. A. Mecozzi, J.D. Moores, H.A. Haus, and Y Lai, Soliton transmission controlOpt. Lett. 16, 1841–1843 (1991).

    Article  Google Scholar 

  25. Y. Kodama and A. Hasegawa, Generation of asymptotically stable optical soli-tons and suppression of the Gordon-Haus effectOpt. Lett. 17, 31–33 (1992).

    Article  Google Scholar 

  26. L.F. Mollenauer, J.P. Gordon, and S.G. Evangelides, The sliding-frequency guiding filter: an improved form of soliton jitter controlOpt. Lett. 17, 1575–1577 (1992).

    Article  Google Scholar 

  27. S.V. ManakovZh. Eksp. Teor. Fiz. 65, 1394 Soy. Phys. JETP 38, 248–253 (1974).

    Google Scholar 

  28. P.K. Way, C.R. Menyuk, and H.H. Chen, Stability of solitons in randomly varying birefringent fibersOpt. Lett. 16, 1231–1233 (1991).

    Article  Google Scholar 

  29. M.G. TaylorOptical Solitons: Theory and ExperimentCambridge University Press, Cambridge (1992).

    Book  Google Scholar 

  30. M.G. Taylor, Observation of new polarization dependence effect in long haul optically amplified systemIEEE Photon. Technol. Lett. 5, 1244–1246 (1993).

    Article  Google Scholar 

  31. F. Heismannet al.Electrooptic polarization scramblers for optically amplified long-haul transmission systems,IEEE Photon. Technol. Lett. 61156–1158 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sabella, R., Lugli, P. (1999). Long-Haul Optical Communications. In: High Speed Optical Communications. Telecommunication Technology and Applications Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5275-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5275-8_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7406-0

  • Online ISBN: 978-1-4615-5275-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics