Skip to main content

Abstract

For several decades now, industrial chemicals have been released into the environment on a massive scale. Many such compounds are readily degraded by soil and aquatic microorganisms but a significant number, bearing structures unrelated to biogenic compounds or those formed by natural processes, degrade slowly or persist and accumulate in the environment where they may present a long-term hazard. Moreover, these so-called xenobiotics often have low aqueous solubility and are adsorbed to paniculate matter, making them less accessible to microbial attack. This improper disposal, misuse and accidental release of toxic organic and inorganic compounds into the environment has resulted in widespread pollution of soils, ground water and the marine environment. As the adverse environmental and health effects of these materials become better associated, increasing attention is being directed towards the development and implementation of innovative technology for cleaning up contamination. A variety of technologies are currently available to treat soils contaminated with hazardous materials, including excavation and burial in a chemically secure landfill, vapor extraction, stabilization and solidification, soil washing, soil flushing, critical fluid extraction, chemical precipitation, thermal desorption and incineration. Many of these physiochemical treatment technologies do not actually destroy the hazardous compounds present; rather, the chemicals may simply be bound in a matrix or transferred from one phase or location to another. Because these methods do not destroy the contamination and because they are often costly, there is a strong incentive to develop and apply innovative aboveground (ex situ) and in place (in situ) remediation methods (Figs. 4, 5, 6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, M. 1994. Biodegradation and Bioremediation. Academic Press, San Diego.

    Google Scholar 

  • Amaral, S. P. 1987. Landfarming of oily wastes: design and operation. Water Science Technology 19: 75–86.

    CAS  Google Scholar 

  • Applied Biotreatment Association. 1990. The Role of Biotreatment of Oil Spills. Applied Biotreatment Association, Washington, DC.

    Google Scholar 

  • Arora, H. S., R. R. Cantor, and J. C. Nemeth. 1982. Land treatment: A viable and successful method of treating petroleum industry wastes. Environment International 7: 285–292.

    Article  CAS  Google Scholar 

  • Atlas, R. 1995a. Bioremediation. Chemical and Engineering News April 3: 32–42.

    Google Scholar 

  • Atlas, R. 1995b. Bioremediation of petroleum pollutants. International Biodeterioration and Biodegradation 1995: 317–327.

    Article  Google Scholar 

  • Bartha, R. 1986. Biotechnology of petroleum pollutant biodegradation. Microbial Ecology 12: 155–172.

    Article  CAS  Google Scholar 

  • Beardsley, T. 1989. No slick fix: Oil spill research is suddenly back in favor. Scientific American 261: 43.

    Google Scholar 

  • Blackburn J. W. and W. R. Hafker. 1993. The impact of biochemistry, bioavailability and bioactivity on the election of bioremediation techniques. Trends in Biotechnology 11: 328–333.

    Article  CAS  Google Scholar 

  • Bluestone, M. 1986. Microbes to the rescue. Chemical Week 139: 34–35.

    Google Scholar 

  • Borden, R. C., T. M. Vogel, J. M. Thomas, and C. H. Ward. 1994. Handbook of Bioremediation. Lewis Publishers, Boca Raton, Florida.

    Google Scholar 

  • Bragg, J. R., R. C. Prince, E. J. Hamer, and R. M. Atlas. 1994. Effectiveness of bioremediation for the Exxon Valdez oil spill. Nature 368: 413–418.

    Article  CAS  Google Scholar 

  • Brooks, R. R. (ed.).1998 Plants that Hyperaccumulate Heavy Metals. CAB International, Oxon.

    Google Scholar 

  • Brown, R. A., R. D. Norris, and G. R. Brubaker. 1985. Aquifer restoration with enhanced bioreclamation. Pollution Engineering. 17: 25–28.

    CAS  Google Scholar 

  • Brubaker, G. R. 1995. The boom in in situ bioremediation. Civil Engineering 65: 38–42.

    Google Scholar 

  • Bumpus, J. A. 1989. Biodegradation of polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium. Applied and Environmental Microbiology 55: 154–158.

    CAS  Google Scholar 

  • Bumpus, J. A., M. Tien, D. Wright, and S. D. Aust. 1985. Oxidation of persistent environmental pollutants by a white rot fungus. Science 228: 1434–1436.

    Article  CAS  Google Scholar 

  • Deswaef, S., Salmon, T., Hiligsmann, S., Taillieu, X, Milande, N., Thonart, P. and M. Crine 1996. Treatment of gypsum waste in a two stage anaerobic digestor. Water Science, and Technology 34: 367–374.

    Article  CAS  Google Scholar 

  • Dibble, J. T., and R. Bartha. 1970a. Effect of environmental parameters on the biodegradation of oil sludge. Applied and Environmental Microbiology 37: 729–739.

    Google Scholar 

  • Dibble, J. T., and R. Bartha. 1979b. Leaching aspects of oil sludge biodegradation in soil. Soil Science. 127: 365–370.

    Article  CAS  Google Scholar 

  • Dibble, J., and R., Bartha. 1979c. Rehabilitation of oil-inundated agricultural land: A case history. Soil Science 128: 56–60.

    Article  CAS  Google Scholar 

  • Fernando, T., J. A. Bumpus, and S. D. Aust 1990. Biodegradation of TNT (2, 4, 6-trinitrotoluene) by Phanerochaete chrysosporium. Applied and Environmental Microbiology 56: 1666–1671.

    CAS  Google Scholar 

  • Flathman, P. E., D. E. Jerger, and J. H. Exner. 1994. Bioremediation-Field experience. Lewis Publishers, Boca Raton, Florida.

    Google Scholar 

  • Frankenberger, W. T., Jr., K. D. Emerson, and D. W. Turner. 1989. In situ bioremediation of an underground diesel fuel spill. A case history. Environment Management 13: 325–332.

    Article  Google Scholar 

  • Ghosa L. D., I. S. You, D. K. Chatterjee, and A M Chakrabarty. 1985. Microbial degradation of halogenated compounds. Science. 228: 135–142.

    Article  Google Scholar 

  • Hart, S. 1996. In situ bioremediation: Defining the limits. Environmental Science and Technology 30: 398–401.

    Article  Google Scholar 

  • Hinchee, R. E. (ed.). 1994. Air Sparging for Site Remediation. Lewis Publishers, Boca Raton, Florida.

    Google Scholar 

  • Hinchee, R. E., and R. F. Olfenbuttel (eds.). 1991a. In Situ Bioreclamation: Applications and Investigations of Hydrocarbon and Contaminated Site Remediation. Butterworth-Heinemann, Boston.

    Google Scholar 

  • Hinchee, R. E., and R. F. Olfenbuttel (eds.) 1991b. On-site Bioreclamation: Processes for Xenobiotic and Hydro-carbon Treatment. Butterworth-Heinemann, Boston.

    Google Scholar 

  • Hsu, T. S., and R. Bartha. 1979. Accelerated mineralization of two organophosphate insecticides in the rhizosphere. Applied and Environmental Microbiology 37: 36–41.

    CAS  Google Scholar 

  • Jain, R. K., and G. S. Sayler. 1987. Problems and potential for in situ treatment of environmental pollutants by engineered microorganisms. Microbiological Sciences 4: 59–63.

    CAS  Google Scholar 

  • Jarvis, B. R., Calkins, J. B. and B. T. Swanson (1996). Compost and rubber tire chips as peat substitutes in nursery media: effects on chemical and physical media properties. Journal of Environmental Horticulture 14: 122–129.

    CAS  Google Scholar 

  • Laine, M. M., and K. S. Jørgensen. 1996. Straw compost and bioremediated soil as inocula for the bioremediation of chlorophenol-contaminated solid. Applied and Environmental Microbiology 62: 1507–1514.

    CAS  Google Scholar 

  • Leahy, J. G., and. R. Colwell. 1990. Microbial degradation of hydrocarbons in the environment. Microbiological Reviews 54: 305–315.

    CAS  Google Scholar 

  • Leson, G., and A. M. Winer. 1991. Biofiltration: An innovative air pollution control technology for VOC emissions. Journal of Air and Waste Management Association 41: 1045–1054.

    Article  CAS  Google Scholar 

  • Morgan, P., and R. J. Watkinson. 1989. Hydrocarbon biodegradation in soils and methods for soil biotreatment. CRC Critical Reviews in Biotechnology 8: 305–333.

    Article  CAS  Google Scholar 

  • Mueller, J. G., P. J. Chapman, and P. H. Pritchard 1989. Creosote-contaminated sites: Their potential for bioremediation. Environmental Science and Technology 23: 1197–1201.

    Article  CAS  Google Scholar 

  • Mueller, J. G., D. P. Middaugh, and S. E. Lantz. 1991. Biodegradation of creosote and pentachlorophenol in contaminated groundwater: Chemical and biological assessment Applied and Environmental Microbiology 57: 1277–1285.

    CAS  Google Scholar 

  • Prince, R. C. 1993. Petroleum spill bioremediation in marine environments. Critical Reviews in Microbiology 19: 217–242.

    Article  CAS  Google Scholar 

  • Pritchard, P. H., Mueller, J. G., Rogers, J. C., Kroner, F. V. and J. A. Glaser, 1992 Oil spill bioremediation: experiences, lessons and results from the Exxon Valdez oil spill in Alaska Biodegradation 3: 315–335.

    Article  CAS  Google Scholar 

  • Ritter, W. F. 1995. A review of bioremediation of contaminated soil and groundwater. Journal of Environmental Science and Health A30: 333–357.

    CAS  Google Scholar 

  • Rosenberg, E. (ed.) 1993. Microorganisms to Combat Pollution. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Rosenberg E., R. Legmann, A. Kushmaro, R. Taube, E. Adler, and E. Z. Ron. 1992. Petroleum bioremediation-a multiphase problem. Biodegradation 3: 337–350.

    Article  CAS  Google Scholar 

  • Swannell, R. P. J., K. Lee, and M. McDonagh. 1996. Field evaluations of marine oil spill bioremediation. Microbiological Reviews 60: 342–365.

    CAS  Google Scholar 

  • Tesan, G., and D. Barbosa. 1987. Degradation of oil by land disposal. Water Science Technology 19: 99–106.

    CAS  Google Scholar 

  • Tsuchii, A., Takeda, K. and Y. Tokiwa 1996. Degradation of the rubber in truck tires by a strain of Nocardia. Biodegradation 7: 405–413.

    Article  Google Scholar 

  • Vanloocke, R., R. DeBorger, J. P. Voets, and W. Verstraete. 1975. Soil and groundwater contamination by oil spills: Problems and remedies. Internationaljournal of Environmental Studies 8: 99–111.

    Article  CAS  Google Scholar 

  • Venosa, A. D., J. R. Haines, W. Nisamaneepong, R. Goving, S. Pradhan, and B. Siddique. 1991. Screening of commercial inocular for efficacy in enhancing oil biodegradation in closed laboratory system. Journal of Hazardous Materials 28: 131–144.

    Article  CAS  Google Scholar 

  • Vogel, T. M. 1996. Bioaugmentation as a soil bioremediation approach. Current Opinion in Biotechnology. 7: 311–316.

    Article  CAS  Google Scholar 

  • Wang, X., and R. Bartha. 1990. Effects of bioremediation on residues: Activity and toxicity in soil contaminated by fuel spills. Soil Biology and Biochemistry 22: 501–506.

    Article  CAS  Google Scholar 

  • Wang, X., X. Yu, and R. Bartha. 1990. Effect of bioremediation on polycyclic aromatic hydrocarbon residues in soil. Environmental Science and Technology 24: 1086–1089.

    Article  CAS  Google Scholar 

  • Wilson, J. T., an C. H. Ward. 1987. Opportunities for bioreclamation of aquifers contaminated with petroleum hydrocarbons. Developments in Industrial Microbiology 27: 109–116.

    CAS  Google Scholar 

  • Zitrides, T. G. 1990. Bioremediation comes of age. Pollution Engineering 12: 59–60.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wainwright, M. (1999). Bioremediation. In: An Introduction to Environmental Biotechnology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5251-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5251-2_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7394-0

  • Online ISBN: 978-1-4615-5251-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics