Skip to main content

Mercury Telluride (HgTe)

  • Chapter
  • 2558 Accesses

Abstract

Mercury telluride (HgTe) is a IIb–VIb semiconductor crystallizing in the zinc-blende structure. HgTe forms alloys with many other IIb–VIb compounds. The Cd x Hg1-x Te alloy system is till the major material used for infrared detectors [1,2], By varying the x composition from zero (HgTe) to unity (CdTe) the energy gap varies from ∼ -0.3 to ∼1.6 eV. This promises that detectors with peak responses over a wide wavelength range can be fabricated from this alloy system. Because of the unique band structure (i.e., “negative” energy gap, “inverted” band structure), this material is also interesting from many phySiCal points of view (see, e.g., Ref. [3]).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.T. Elliott, in Properties of Narrow Gap Cadmium-Based Compounds, EMIS Datareviews Series No. 10, edited by P. Capper (INSPEC (IEE), London, 1994), p. 311.

    Google Scholar 

  2. I. M. Baker, in Properties of Narrow Gap Cadmium-Based Compounds, EMIS Datareviews Series No. 10, edited by P. Capper (INSPEC (IEE), London, 1994), p. 323.

    Google Scholar 

  3. T. C. Harman, in II–VI Semiconducting Compounds, edited by D. G. Thomas (Benjamin, New York, 1967), p. 982.

    Google Scholar 

  4. M. T. Czyzyk and M. Podgórny, Phys. Status Solidi B 98, 507 (1980).

    Article  CAS  Google Scholar 

  5. N. A. Cade and P. M. Lee, Solid State Commun. 56, 637 (1985).

    Article  CAS  Google Scholar 

  6. R. Markowski and M. Podgorny, J. Phys. C: Condens. Matter 4, 2505 (1992).

    Article  CAS  Google Scholar 

  7. O. Castaing, J. T. Benhlal, R. Granger, and R. Triboulet, J. Phys. I (France) 6, 907 (1996).

    Article  CAS  Google Scholar 

  8. A. Kislel, M. Zimnal-Starnawska, F. Antonangeli, M. Piacentini, and N. Zema, Nuovo Cimento D 8, 436 (1986).

    Article  Google Scholar 

  9. K.-U. Gawlik, L. Kipp, M. Skibowski, N. Orlowski, and R. Manzke, Phys. Rev. Lett. 78, 3165 (1997).

    Article  CAS  Google Scholar 

  10. J. Baars and F. Sorger, Solid State Commun. 10, 875 (1972).

    Article  CAS  Google Scholar 

  11. G. A. Samara, Phys. Rev. B 27, 3494 (1983).

    Article  CAS  Google Scholar 

  12. M. Grynberg, R. Le Toullec, and M. Balkanski, Phys. Rev. B 9, 517 (1974).

    Article  CAS  Google Scholar 

  13. M. P. Volz, F. R. Szofran, S. L. Lehoczky, and C.-H. Su, Solid State Commun. 75, 943 (1990).

    Article  CAS  Google Scholar 

  14. C.-C. Wu, D.-Y. Chu, C.-Y. Sun, and T.-R. Yang, Jpn. J. Appl. Phys. 34, 4687 (1995).

    Article  CAS  Google Scholar 

  15. W. Szuszkiewicz, Phys. Status Solidi B 79, 691 (1977).

    Article  CAS  Google Scholar 

  16. E. O. Kane, J. Phys. Chem. Solids 1, 249 (1957).

    Article  Google Scholar 

  17. M. Cardona and D. L. Greenaway, Phys. Rev. 131, 98 (1963).

    Article  CAS  Google Scholar 

  18. W. J. Scouler and G. B. Wright, Phys. Rev. 133, A736 (1964).

    Article  Google Scholar 

  19. A. Moritani, H. Sekiya, K. Taniguchi, C. Hamaguchi, and J. Nakai, Jpn. J. Appl. Phys. 10, 1410 (1971).

    Article  CAS  Google Scholar 

  20. D. J. Chadi, J. P. Walter, M. L. Cohen, Y. Petroff, and M. Balkanski, Phys. Rev. B 5, 3058 (1972).

    Article  Google Scholar 

  21. M. Rösch, R. Atzmüller, G. Schaack, and C. R. Becker, Phys. Rev. B 49, 13460 (1994).

    Article  Google Scholar 

  22. H. Arwin and D. E. Aspnes, J. Vac. Sci. Technol. A 2, 1316 (1984).

    Article  CAS  Google Scholar 

  23. L. Vina, C. Umback, M. Cardona, and L. Vodopyanov, Phys. Rev. B 29, 6752 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Adachi, S. (1999). Mercury Telluride (HgTe). In: Optical Constants of Crystalline and Amorphous Semiconductors. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5247-5_43

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5247-5_43

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-8567-7

  • Online ISBN: 978-1-4615-5247-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics