Skip to main content

Abstract

Zinc selenide (ZnSe) crystallizes in the cubic, zinc-blende structure, although it is also possible to grow hexagonal wurtzite form. ZnSe is the prototype of wide-band-gap II–VI semiconductors and plays an important role in the development of blue-green or blue injection lasers (see, e.g., Ref. [1]). Many attempts have, thus, been made to achieve epitaxial growth of ZnSe layers on GaAs substrates [2] because of the relatively small lattice mismatch between GaAs and ZnSe (∼0.27%). Its large band gap and closely lattice-matched nature make it also attractive for use as a passivation layer for GaAs and as an insulating layer of GaAs field-effect transistors [3]. ZnSe is also promising material for nonlinear optical devices (see, e.g., Ref. [4]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Nakano and A. Ishibashi, in Properties of Wide Bandgap II–VI Semiconductors, EMIS Datareviews Series No. 17, edited by R. Bhargava (INSPEC (IEE), London, 1997), p. 190.

    Google Scholar 

  2. See pp. 77-95 in Ref. [1].

    Google Scholar 

  3. G. D. Studtmann, R. L. Gunshor, L. A. Kolodziejski, M. R. Melloch, J. A. Cooper, Jr., R. F. Pierret, D. F. Munich, C. Choi, and N. Otsuka, Appl. Phys. Lett. 52, 1249 (1988).

    Article  CAS  Google Scholar 

  4. T. Saiki, K. Takeuchi, M. Kuwata-Gonokami, T. Mitsuyu, and K. Ohkawa, Appl. Phys. Lett. 60, 192 (1992).

    Article  CAS  Google Scholar 

  5. S. Adachi and T. Taguchi, Phys. Rev. B 43, 9569 (1991).

    Article  CAS  Google Scholar 

  6. J. R. Chelikowsky and M. L. Cohen, Phys. Rev. B 14, 556 (1976).

    Article  CAS  Google Scholar 

  7. A. Deneuville, D. Tanner, and P. H. Holloway, Phys. Rev. B 43, 6544 (1991).

    Article  CAS  Google Scholar 

  8. D. Berlincourt, H. Jaffe, and L. R. Shiozawa, Phys. Rev. 129, 1009 (1963).

    Article  CAS  Google Scholar 

  9. I. Strzalkowski, S. Joshi, and C. R. Crowell, Appl. Phys. Lett. 28, 350 (1976).

    Article  CAS  Google Scholar 

  10. M. Aven, D. T. F. Marple, and B. Segall, J. Appl. Phys. 32, 2261 (1961).

    Article  CAS  Google Scholar 

  11. A. Manabe, A. Mitsuishi, and H. Yoshinaga, Jpn. J. Appl. Phys. 6, 593 (1967).

    Article  CAS  Google Scholar 

  12. A. Hadni, J. Claudel, and P. Strimer, Phys. Status Solidi 26, 241 (1968).

    Article  CAS  Google Scholar 

  13. P. A. Miles, Appl. Opt. 16, 2891 (1977).

    Article  CAS  Google Scholar 

  14. B. Bendow, H. G. Lipson, and S. P. Yukon, Appl. Opt. 16, 2909 (1977).

    Article  CAS  Google Scholar 

  15. T. Hattori, Y. Homma, A. Mitsuishi, and M. Tacke, Opt. Commun. 7, 229 (1973).

    Article  CAS  Google Scholar 

  16. D. T. F. Marple, J. Appl. Phys. 35, 539 (1964).

    Article  CAS  Google Scholar 

  17. M. Ukita, H. Okuyama, M. Ozawa, A. Ishibashi, K. Akimoto, and Y. Mori, Appl. Phys. Lett. 63, 2082 (1993).

    Article  CAS  Google Scholar 

  18. U. Lunz, B. Jobst, S. Einfeldt, C. R. Becker, D. Hommel, and G. Landwehr, J. Appl. Phys. 77, 5377 (1995).

    Article  CAS  Google Scholar 

  19. M. Bertolotti, V. Bogdanov, A. Ferrari, A. Jascow, N. Nazorova, A. Pikhtin, and L. Schirone, J. Opt. Soc. Am. B 7, 918 (1990).

    Article  CAS  Google Scholar 

  20. H. H. Li, J. Phys. Chem. Ref. Data 13, 103 (1984).

    Article  CAS  Google Scholar 

  21. E. Griebl, G. F. Schötz, Ch. Birzer, W. Kerner, T. Reisinger, B. Hahn, and W. Gebhardt, Acta Phys. Polon. A 88, 995 (1995).

    CAS  Google Scholar 

  22. G. E. Hite, D. T. F. Marple, M. Aven, and B. Segall, Phys. Rev. 156, 850 (1967).

    Article  CAS  Google Scholar 

  23. V. V. Sobolev, V. I. Donetskikh, and E. F. Zagainov, Sov. Phys. Semicond. 12, 646 (1978).

    Google Scholar 

  24. H. Venghaus, Phys. Rev. B 19, 3071 (1979).

    Article  CAS  Google Scholar 

  25. M. Stoehr, F. Hamdani, J. P. Lascaray, and M. Maurin, Phys. Rev. B 44, 8912 (1991).

    Article  CAS  Google Scholar 

  26. D. Coquillat, F. Hamdani, J. P. Lascaray, O. Briot, N. Briot, and R. L. Aulombard, Phys. Rev. B 47, 10489 (1993).

    Article  CAS  Google Scholar 

  27. F. Kubachi, J. Gutowski, D. Hommel, M. Heuken, and U. W. Pohl, Phys. Rev. B 54, 2028 (1996).

    Article  Google Scholar 

  28. G. N. Aliev, N. P. Gavaleshko, O. S. Koshchug, V. I. Pleshko, R. P. Seisyan, and K. D. Sushkevich, Sov. Phys. Solid State 34, 1286 (1992).

    Google Scholar 

  29. V. P. Gribkovskii, L. G. Zimin, S. V. Gaponenko, I. E. Malinovskii, P. I. Kuznetsov, and G. G. Yakushcheva, Phys. Status Solidi B 158, 359 (1990).

    Article  CAS  Google Scholar 

  30. G. N. Aliev, R. M. Datsiev, S. V. Ivanov, P. S. Kop’ev, R. P. Seisyan, and S. V. Sorokin, J. Cryst. Growth 159, 523 (1996).

    Article  CAS  Google Scholar 

  31. S. Ves, K. Strössner, N. E. Christensen, C. K. Kim, and M. Cardona, Solid State Commun. 56, 479 (1985).

    Article  CAS  Google Scholar 

  32. H. Ehrenreich, H. R. Philipp, and J. C. Phillips, Phys. Rev. Lett. 8, 59 (1962).

    Article  Google Scholar 

  33. J. P. Walter, M. L. Cohen, Y. Petroff, and M. Balkanski, Phys. Rev. B 1, 2661 (1970).

    Article  Google Scholar 

  34. J. L. Freeouf, Phys. Rev. B 7, 3810 (1973).

    Article  CAS  Google Scholar 

  35. J. Gautron, C. Raising, and P. Lemasson, J. Phys. D: Appl.Phys. 15, 153 (1982).

    Article  CAS  Google Scholar 

  36. J. C. Jans, Philips J. Res. 47, 347 (1993).

    CAS  Google Scholar 

  37. Y.-D. Kim, S. L. Cooper, M. V. Klein, and B. T. Jonker, Appl. Phys. Lett. 62, 2387 (1993).

    Article  CAS  Google Scholar 

  38. R. Dahmani, L. Salamanca-Riba, N. V. Nguyen, D. Chandler-Horowitz, and B. T. Jonker, J. Appl. Phys. 76, 514 (1994).

    Article  CAS  Google Scholar 

  39. U. Rossow, T. Werninghaus, D. R. T. Zahn, W. Richter, and K. Horn, Thin Solid Films 233, 176 (1993); U. Rossow, private communication (1994).

    Article  CAS  Google Scholar 

  40. K. Kato, F. Akinaga, T. Kamai, and M. Wada, J. Cryst. Growth 138, 373 (1994).

    Article  CAS  Google Scholar 

  41. C. C. Kim and S. Sivananthan, Phys. Rev. B 53, 1475 (1996).

    Article  CAS  Google Scholar 

  42. M. Cardona and R. Haensel, Phys. Rev. B 1, 2605 (1970).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Adachi, S. (1999). Zinc Selenide (ZnSe). In: Optical Constants of Crystalline and Amorphous Semiconductors. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5247-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5247-5_35

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-8567-7

  • Online ISBN: 978-1-4615-5247-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics