Skip to main content

Abstract

Zinc oxide (ZnO) is a compound crystallizing in the wurtzite structure, and has a wide band gap ∼3.4 eV at 300 K. It has been used extensively as a photoconducting and fluorescent material, being effective in the visible-to-UV spectral region. The excellent optical, piezoelectric, and acoustooptic properties of a thin ZnO film also make it possible to fabricate solar cell windows [1], gas sensors [2], surface acoustic wave devices [3], and integrated acoustooptic devices [4]. Optically pumped lasing from ZnO platelets have also been observed at very low pump power (∼4 W/cm2) [5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. A. Aranovich, D. Golmayo, A. L. Fahrenbruch, and R. H. Bube, J. Appl. Phys. 51, 4260 (1980).

    Article  CAS  Google Scholar 

  2. S. Pizzini, N. Butta, D. Narducci, and M. Palladino, J. Electrochem. Soc. 136, 1945 (1989).

    Article  CAS  Google Scholar 

  3. F. S. Hickernell, Proc. IEEE 64, 631 (1976).

    Article  CAS  Google Scholar 

  4. T. Shiosaki, N. Kitamura, and A. Kawabata, Proc. IEEE Ultrasonics Symp., p. 296 (1991).

    Google Scholar 

  5. D. C. Reynolds, D. C. Look, and B. Jogai, Solid State Commun. 99, 873 (1996).

    Article  CAS  Google Scholar 

  6. C.-K. Yang and K. S. Dy, Solid State Commun. 88, 491 (1993).

    Article  CAS  Google Scholar 

  7. Y.-N. Xu and W. Y. Ching, Phys. Rev. B 48, 4335 (1993).

    Article  CAS  Google Scholar 

  8. D. Vogel, P. Krüger, and J. Pollmann, Phys. Rev. B 54, 5495 (1996).

    Article  CAS  Google Scholar 

  9. A. Kobayashi, O. F. Sankey, S. M. Volz, and J. D. Dow, Phys. Rev. B 28, 935 (1983).

    Article  CAS  Google Scholar 

  10. K. Hummer, Phys. Status Solidi B 56, 249 (1973).

    Article  Google Scholar 

  11. A. Mang, K. Reimann, and St. Rübenacke, Solid State Commun. 94, 251 (1995).

    Article  CAS  Google Scholar 

  12. J. L. Freeouf, Phys. Rev. B 7, 3810 (1973).

    Article  CAS  Google Scholar 

  13. R. Klucker, H. Nelkowski, Y. S. Park, M. Skibowski, and T. S. Wagner, Phys. Status Solidi B 45, 265 (1971).

    Article  CAS  Google Scholar 

  14. E. F. Venger, A. V. Melnichuk, L. Yu. Melnichuk, and Yu. A. Pasechnik, Phys. Status Solidi B 188, 823 (1995).

    Article  CAS  Google Scholar 

  15. W. L. Bond, J. Appl. Phys. 36, 1674 (1965).

    Article  CAS  Google Scholar 

  16. E. C. Heltemes and H. L. Swinney, J. Appl. Phys. 38, 2387 (1967).

    Article  CAS  Google Scholar 

  17. H. Lüth, Solid State Commun. 7, 585 (1969).

    Article  Google Scholar 

  18. E. Mollwo, Z. Angew. Phys. 6, 257 (1954).

    CAS  Google Scholar 

  19. Y. S. Park and J. R. Schneider, J. Appl. Phys. 39, 3049 (1968).

    Article  CAS  Google Scholar 

  20. S. A. Geidur and A. D. Yaskov, Opt. Spectrosc. 48, 618 (1981).

    Google Scholar 

  21. K. Vedam and T. A. Davis, Phys. Rev. 181, 1196 (1969).

    Article  CAS  Google Scholar 

  22. D. G. Thomas, J. Phys. Chem. Solids 15, 86 (1960).

    Article  CAS  Google Scholar 

  23. T. Koda and D. W. Langer, Phys. Rev. Lett. 20, 50 (1968).

    Article  CAS  Google Scholar 

  24. W. Y. Liang and A. D. Yoffe, Phys. Rev. Lett. 20, 59 (1968).

    Article  CAS  Google Scholar 

  25. K. Hummer and P. Gebhardt, Phys. Status Solidi B 85, 271 (1978).

    Article  Google Scholar 

  26. V. V. Sobolev, V. I. Donetskikh, and E. F. Zagainov, Sov. Phys. Semicond. 12, 646 (1978).

    Google Scholar 

  27. G. Blattner, G. Kurtze, G. Schmieder, and C. Klinigshirn, Phys. Rev. B 25, 7413 (1982).

    Article  CAS  Google Scholar 

  28. R. L. Hengehold, R. J. Almassy, and F. L. Pedrotti, Phys. Rev. B 1, 4784 (1970).

    Article  Google Scholar 

  29. R. Matz and H. Lüth, Appl. Phys. 18, 123 (1979).

    Article  CAS  Google Scholar 

  30. H. Yoshikawa and S. Adachi, Jpn. J. Appl. Phys. 36, 6237 (1997).

    Article  CAS  Google Scholar 

  31. P. L. Washington, H. C. Ong, J. Y. Dai, and R. P. H. Chang, Appl. Phys. Lett. 72, 3261 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Adachi, S. (1999). Zinc Oxide (ZnO). In: Optical Constants of Crystalline and Amorphous Semiconductors. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5247-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5247-5_32

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-8567-7

  • Online ISBN: 978-1-4615-5247-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics