Skip to main content

Abstract

Silicon (Si) is the second most common element in the upper layer of the earth’s crust (about 25% of the crust consists of Si, and only oxygen exceeds it in abundance); however, this element is usually not found free, but mainly in its oxides and silicates. The Czochralski method is commonly used to produce single crystals of Si used for solid-state devices. Crystalline Si has a metallic luster and grayish color, and transmits more than 95% of all wavelengths of infrared, from 1.3 to 6.7 µm. Because of the pre-eminent position in VLSI circuit applications, Si-based devices now constitute about 95% of all semiconductor devices sold worldwide [1,2]. Even though some III–V compounds (such as GaAs and InGaAs) have certain advantages in material properties over Si, this trend is unlikely to change during the next few decades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. D. Meindl, IEEE Trans. Electron. Dev. ED-31, 1555 (1984).

    Article  Google Scholar 

  2. S. M. Sze, in High-Speed Semiconductor Devices, edited by S. M. Sze (Wiley-Interscience, New York, 1990), p. 1.

    Google Scholar 

  3. K. Seeger, J. Appl. Phys. 63, 5439 (1988).

    Article  CAS  Google Scholar 

  4. T. S. Moss, Optical Properties of Semiconductors (Butterworth, London, 1959).

    Google Scholar 

  5. C. D. Salzberg and J. J. Villa, J. Opt. Soc. Am. 47, 244 (1957).

    Article  CAS  Google Scholar 

  6. G. A. Samara, Phys. Rev. B 27, 3494 (1983).

    Article  CAS  Google Scholar 

  7. J. R. Birch, Infrared Phys. 18, 613 (1978).

    Article  CAS  Google Scholar 

  8. M. N. Afsar and J. B. Hasted, Infrared Phys. 18, 835 (1978).

    Article  CAS  Google Scholar 

  9. R. J. Collins and H. Y. Fan, Phys. Rev. 93, 674 (1954).

    Article  CAS  Google Scholar 

  10. M. Lax and E. Burstein, Phys. Rev. 97, 39 (1955).

    Article  CAS  Google Scholar 

  11. F. A. Johnson, Proc. Phys. Soc. London 73, 265 (1959).

    Article  CAS  Google Scholar 

  12. J. R. Aronson, H. G. McLinden, and P. J. Gielisse, Phys. Rev. 135, A785 (1964).

    Article  Google Scholar 

  13. B. Bendow, H. G. Lipson, and S. P. Yukon, Appl. Opt. 16, 2909 (1977).

    Article  CAS  Google Scholar 

  14. M. M. Pradhan, R. K. Garg, and M. Arora, Infrared Phys. 27, 25 (1987).

    Article  CAS  Google Scholar 

  15. Z. Jichang, W. Jiangen, M. Bilan, Z. Jingbing, and Q. Fenyuan, Infrared Phys. 33, 381 (1992).

    Article  Google Scholar 

  16. W. Primak, Appl. Opt. 10, 759 (1971).

    Article  CAS  Google Scholar 

  17. R. Hulthén, Phys. Scripta. 12, 342 (1975).

    Article  Google Scholar 

  18. D. F. Edwards and E. Ochoa, Appl. Phys. 19, 4130 (1980).

    CAS  Google Scholar 

  19. H. H. Li, J. Phys. Chem. Ref. Data 9, 561 (1980).

    Article  CAS  Google Scholar 

  20. D. F. Edwards, in Handbook of Optical Constants of Solids, edited by E. D. Palik (Academic, Orlando, 1985), p. 547.

    Google Scholar 

  21. G. G. Macfarlane, T. P. McLean, J. E. Quarrington, and V. Roberts, Phys. Rev. 111, 1245 (1958).

    Article  CAS  Google Scholar 

  22. M. J. Keevers and M. A. Green, Appl. Phys. Lett. 66, 174 (1995).

    Article  CAS  Google Scholar 

  23. D. E. Aspnes and A. A. Studna, Phys. Rev. B 27, 985 (1983).

    Article  CAS  Google Scholar 

  24. G. E. Jellison, Jr., Opt. Mater. 1, 41 (1992).

    Article  CAS  Google Scholar 

  25. V. Nayar, W. Y. Leong, C. Pickering, A. J. Pidduck, R. T. Carline, and D. J. Robbins, Appl. Phys. Lett. 61, 1304 (1992).

    Article  CAS  Google Scholar 

  26. D. E. Aspnes and A. A. Studna, Appl. Phys. Lett. 39, 316 (1981).

    Article  CAS  Google Scholar 

  27. T. Yasuda and D. E. Aspnes, Appl. Opt. 33, 7435 (1994).

    Article  CAS  Google Scholar 

  28. K. Utani, T. Suzuki, and S. Adachi, J. Appl. Phys. 73, 3467 (1993).

    Article  CAS  Google Scholar 

  29. H. Yao, J. A. Woollam, and S. A. Alterovitz, Appl. Phys. Lett. 62, 3324 (1993).

    Article  CAS  Google Scholar 

  30. H. R. Philipp, J. Appl. Phys. 43, 2835 (1972).

    Article  CAS  Google Scholar 

  31. B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, and B. K. Fujikawa, At. Data Nucl. Data Tables 27, 1 (1982).

    Article  CAS  Google Scholar 

  32. C. Gähwiller and F. C. Brown, in Proc. 10th Int. Conf. Phys. Semicond., Cambridge, Mass., 1970, edited by S. P. Keller, J. C. Hensel, and F. Stern (U. S. Atomic Energy Commission, Springfield, Va., 1970), p. 213.

    Google Scholar 

  33. F. C. Brown, R. Z. Bachrach, and M. Skibowski, Phys. Rev. B 15, 4781 (1977).

    Article  CAS  Google Scholar 

  34. D. L. Windt, W. C. Cash, Jr., M. Scott, P. Arendt, B. Newnam, R. F. Fisher, A. B. Swartzlander, P. Z. Takacs, and J. M. Pinneo, Appl. Opt. 27, 279 (1988).

    Article  CAS  Google Scholar 

  35. M. Yanagihara, M. Niwano, T. Yamada, and S. Yamaguchi, Appl. Opt. 27, 563 (1988).

    Article  CAS  Google Scholar 

  36. S. C. Woronick, W. Ng, A. Król, and Y. H. Kao, J. Phys. Chem. Solids 53, 1265 (1992).

    Article  CAS  Google Scholar 

  37. R. Soufli and E. M. Gullikson, Appl. Opt. 36, 5499 (1997).

    Article  CAS  Google Scholar 

  38. B. L. Hanke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, and B. K. Fujikawa, AIP Conf.Proc. 75, 340 (1981).

    Article  Google Scholar 

  39. E. Hartmann, P. O. Hahn, and R. J. Behm, J. Appl. Phys. 69, 4273 (1991).

    Article  CAS  Google Scholar 

  40. P. Lautenschlager, M. Garriga, L. Vina, and M. Cardona, Phys. Rev. B 36, 4821 (1987).

    Article  CAS  Google Scholar 

  41. G. E. Jellison, Jr. and F. A. Modine, J. Appl. Phys. 16, 3758 (1994).

    Article  Google Scholar 

  42. T. Aoki and S. Adachi, J. Appl. Phys. 69, 1574 (1991).

    Article  CAS  Google Scholar 

  43. W. Spitzer and H. Y. Fan, Phys. Rev. 108, 268 (1957).

    Article  CAS  Google Scholar 

  44. Z.-H. Zhou, B. Choi, M. I. Flik, S. Fan, and R. Feif, J. Appl. Phys. 76, 2448 (1994).

    Article  CAS  Google Scholar 

  45. A. Gaymann, H. P. Geserich, and H. v. Löhneysen, Phys. Rev. B 52, 16486 (1995).

    Article  CAS  Google Scholar 

  46. L. Vina and M. Cardona, Phys. Rev. B 29, 6739 (1984).

    Article  CAS  Google Scholar 

  47. G. E. Jellison, Jr., S. P. Withrow, J. W. McCamy, J. D. Budai, D. Lubben, and M. J. Godbole, Phys. Rev. B 52, 14607 (1995).

    Article  CAS  Google Scholar 

  48. M. Bertolotti, V. Bogdanov, A. Ferrari, A. Jascow, N. Nazorova, A. Pikhtin, and L. Schirone, J. Opt. Soc. Am. B 7, 918 (1990).

    Article  CAS  Google Scholar 

  49. J. A. McCaulley, V. M. Donnelly, M. Vernon, and I. Taha, Phys. Rev. B 49, 7408 (1994).

    Article  CAS  Google Scholar 

  50. G. Ghosh, J. Appl. Phys. 79, 9388 (1996).

    Article  CAS  Google Scholar 

  51. H. Lee and E. D. Jones, Appl. Phys. Lett. 68, 3153 (1996).

    Article  CAS  Google Scholar 

  52. P. Etchegoin, J. Kircher, and M. Cardona, Phys. Rev. B 47, 10292 (1993).

    Article  CAS  Google Scholar 

  53. L. T. Canham, Appl. Phys. Lett. 57, 1064 (1990).

    Article  Google Scholar 

  54. F. Huaxiang, Y. Ling, and X. Xide, Phys. Rev. B 48, 10978 (1993).

    Article  Google Scholar 

  55. M. S. Hybertsen, Phys. Rev. Lett. 72, 1514 (1994).

    Article  CAS  Google Scholar 

  56. L.-W. Wang and A. Zunger, Phys. Rev. Lett. 73, 1039 (1994).

    Article  CAS  Google Scholar 

  57. H. Münder, M. G. Berger, H. Lüth, U. Rossow, U. Frotscher, W. Richter, R. Herino, and M. Ligeon, Appl. Surf. Sci. 63, 57 (1993).

    Article  Google Scholar 

  58. U. Rossow, H. Münder, M. Thönissen, and W. Theiß, J. Lumin. 57, 205 (1993).

    Article  CAS  Google Scholar 

  59. L. H. Qin, Y. D. Zheng, R. Zhang, S. L. Gu, H. T. Shi, and D. Feng, Appl. Phys. A 58, 163 (1994).

    Article  Google Scholar 

  60. S. Adachi, Phys. Rev. B 38, 12966 (1988); J. Appl. Phys. 66, 3224 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Adachi, S. (1999). Silicon (Si). In: Optical Constants of Crystalline and Amorphous Semiconductors. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5247-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5247-5_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-8567-7

  • Online ISBN: 978-1-4615-5247-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics