Skip to main content

Indium Antimonide (InSb)

  • Chapter

Abstract

Indium antimonide (InSb) has the smallest band gap of any of the III–V semiconductors (E o∼0.18 eV at 300 K, Ref. [1]). InSb is, thus, an interesting semiconductor for use in long-wavelength optoelectronic device applications. Its relatively high electron mobility (μn∼7×104 cm2/V-s at 300 K, Ref. [1]) makes it an attractive material for use in galvanomagnetic and Seebeck device applications. InSb also has the lowest melting point (T m=800 K) and largest lattice constant (a 0 =6.47931 Å at 298.15 K) among the III–V semiconductors [1].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Numerical Data and Functional Relationships in Science and Technology, edited by K.-H. Hellwege and O. Madelung, Landolt-Börnstein, New Series, Group III, Vol. 17, Pt. a (Springer, Berlin, 1982).

    Google Scholar 

  2. J. R. Chelikowsky and M. L. Cohen, Phys. Rev. B 14, 556 (1976).

    Article  CAS  Google Scholar 

  3. J. R. Chelikowsky and M. L. Cohen, Phys. Rev. B 30, 4828 (1984).

    Article  Google Scholar 

  4. S. N. Sahu, J. T. Borenstein, V. A. Singh, and J. W. Corbett, Phys. Status Solidi B 122, 661 (1984).

    Article  CAS  Google Scholar 

  5. M.-Z. Huang and W. Y. Ching, J. Phys. Chem. Solids 46, 977 (1985).

    Article  CAS  Google Scholar 

  6. S. Massidda, A. Continenza, A. J. Freeman, T. M. de Pascale, F. Meloni, and M. Serra, Phys. Rev. B 41, 12079 (1990).

    Article  CAS  Google Scholar 

  7. S. Adachi, Phys. Rev. B 35, 7454 (1987).

    Article  CAS  Google Scholar 

  8. S. Adachi, J. Appl. Phys. 61, 4869 (1987).

    Article  CAS  Google Scholar 

  9. H. Yoshinaga and R. A. Oetjen, Phys. Rev. 101, 526 (1956).

    Article  CAS  Google Scholar 

  10. M. Hass and B. W. Henvis, J. Phys. Chem. Solids 23, 1099 (1962).

    Article  CAS  Google Scholar 

  11. R. B. Sanderson, J. Phys. Chem. Solids 26, 803 (1965).

    Article  CAS  Google Scholar 

  12. R. W. Gammon and E. D. Palik, J. Opt. Soc. Am. 64, 350 (1974).

    Article  CAS  Google Scholar 

  13. K. A. Maslin, C. Patel, and T. J. Parker, Infrared Phys. 32, 303 (1991).

    Article  CAS  Google Scholar 

  14. E. S. Koteles and W. R. Datars, Can. J. Phys. 54, 1676 (1976).

    Article  CAS  Google Scholar 

  15. E. Haga and H. Kimura, J. Phys. Soc. Jpn 18, 777 (1963).

    Article  CAS  Google Scholar 

  16. R. G. Breckenridge, R. F. Blunt, W. R. Hosier, H. P. R. Frederikse, and W. Oshinsky, Phys. Rev. 96, 571 (1954).

    Article  CAS  Google Scholar 

  17. W. G. Spitzer and H. Y. Fan, Phys. Rev. 106, 882 (1957).

    Article  CAS  Google Scholar 

  18. S. W. Kurnick and J. M. Powell, Phys. Rev. 116, 597 (1959).

    Article  CAS  Google Scholar 

  19. P. I. Baranskii, O. P. Gorodnichii, and N. V. Shevchenko, Infrared Phys. 30, 259 (1990).

    Article  Google Scholar 

  20. G. W. Gobeli and H. Y. Fan, Phys. Rev. 119, 613 (1960).

    Article  CAS  Google Scholar 

  21. R. B. James and Y.-C. Chang, Phys. Rev. B 38, 9778 (1988).

    Article  CAS  Google Scholar 

  22. T. S. Moss, S. D. Smith, and T. D. F. Hawkins, Proc. Phys. Soc. London 70B, 776 (1957).

    CAS  Google Scholar 

  23. E. G. Valyashko and K. Gerrmann, Sov. Phys.-Semicond. 1, 904 (1968).

    Google Scholar 

  24. P. Y. Liu and J. C. Maan, Phys. Rev. B 47, 16274 (1993).

    Article  CAS  Google Scholar 

  25. P. P. Paskov, J. Appl. Phys. 76, 5439 (1994).

    Article  CAS  Google Scholar 

  26. E. Burstein, Phys. Rev. 93, 632 (1954).

    Article  CAS  Google Scholar 

  27. T. S. Moss, Proc. Phys. Soc. London 67, 775 (1954).

    Article  Google Scholar 

  28. M. Cardona and G. Harbeke, Phys. Rev. Lett. 8, 90 (1962).

    Article  Google Scholar 

  29. M. Cardona and G. Harbeke, J. Appl. Phys. 34, 813 (1963).

    Article  Google Scholar 

  30. R. E. Morrison, Phys. Rev. 124, 1314 (1961).

    Article  CAS  Google Scholar 

  31. H. Ehrenreich, H. R. Philipp, and J. C. Phillips, Phys. Rev. Lett. 8, 59 (1962).

    Article  Google Scholar 

  32. H. R. Philipp and H. Ehrenreich, Phys. Rev. Lett. 8, 92 (1962).

    Article  CAS  Google Scholar 

  33. H. R. Philipp and H. Ehrenreich, Phys. Rev. 129, 1550 (1963).

    Article  CAS  Google Scholar 

  34. S. S. Vishnubhatla and J. C. Woolley, Can. J. Phys. 46, 1769 (1968).

    Article  CAS  Google Scholar 

  35. D. E. Aspnes and A. A. Studna, Phys. Rev. B 27, 985 (1983).

    Article  CAS  Google Scholar 

  36. S. Logothetidis, L. Vina, and M. Cardona, Phys. Rev. B 31, 947 (1985).

    Article  CAS  Google Scholar 

  37. M. Cardona, W. Gudat, E. E. Koch, M. Skibowski, B. Sonntag, and P. Y. Yu, Phys. Rev. Lett. 25, 659 (1970).

    Article  CAS  Google Scholar 

  38. M. Cardona, W. Gudat, B. Sonntag, and P. Y. Yu, in Proc. 10th Int. Conf. Phys emicond., Cambridge, Mass., 1970, edited by S. P. Keller, J. C. Hensel, and F. Stern (U. S. Atomic Energy Commission, Springfield, Va., 1970), p. 209.

    Google Scholar 

  39. W. Gudat, E. E. Koch, P. Y. Yu, M. Cardona, and C. M. Penchina, Phys. Status Solidi B 52, 505 (1972).

    Article  CAS  Google Scholar 

  40. D. E. Aspnes, M. Cardona, V. Saile, M. Skibowski, and G. Sprüssel, Solid State Commun. 31, 99 (1979).

    Article  CAS  Google Scholar 

  41. S. Adachi, J. Appl. Phys. 66, 6030 (1989).

    Article  CAS  Google Scholar 

  42. T. Miyazaki and S. Adachi, Phys. Status Solidi B 163, 299 (1991).

    Article  CAS  Google Scholar 

  43. X. Y. Gong, H. Kan, T. Makino, T. Yamaguchi, T. Nakatsukasa, M. Kuma-gawa, N. L. Rowell, A. Wang, and R. Rinfret, Cryst. Res. Technol. 30, 603 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Adachi, S. (1999). Indium Antimonide (InSb). In: Optical Constants of Crystalline and Amorphous Semiconductors. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5247-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5247-5_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-8567-7

  • Online ISBN: 978-1-4615-5247-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics