Skip to main content
  • 2597 Accesses

Abstract

Gallium antimonide (GaSb) is a semiconductor of the group III–V compounds. Its lattice has the zinc-blende structure; the melting point of the compound is 985 K [1]. GaSb and its lattice-matched alloy systems AlGaAsSb and InGaAsSb have been employed in various optoelectronic and electron devices, such as lasers, photode-tectors, and heterojunction bipolar transistors [2], The study of low carrier concentration GaSb layer is crucial for the fabrication of such GaSb-based devices. With the current progress in MBE and MOCVD it has now been possible to grow high-quality, undoped GaSb with a residual carrier density as low as 1×1016 cm-3 [3,4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Numerical Data and Functional Relationships in Science and Technology, edited by K.-H. Hellwege and O. Madelung, Landolt-Börnstein, New Series, Group III, Vol. 17, Pt. a (Springer, Berlin, 1982).

    Google Scholar 

  2. A. G. Milnes and A. Y. Polyakov, Solid-State Electron. 36, 803 (1993).

    Article  CAS  Google Scholar 

  3. S. K. Haywood, A. B. Henriques, N. J. Mason, R. J. Nicholas, and P. J. Walker, Semicond. Sci. Technol. 3, 315 (1988).

    Article  CAS  Google Scholar 

  4. A. Baraldi, C. Ghezzi, R. Magnanini, A. Parisini, L. Tarricone, A. Bosacchi, S. Franchi, V. Avanzini, and P. Allegri, Mater. Sci. Eng. B 28, 174 (1994).

    Article  CAS  Google Scholar 

  5. J. R. Chelikowsky and M. L. Cohen, Phys. Rev. B 14, 556 (1976).

    Article  CAS  Google Scholar 

  6. S. Adachi, J. Appl. Phys. 61, 4869 (1987).

    Article  CAS  Google Scholar 

  7. S. Adachi, Phys. Rev. B 35, 7454 (1987).

    Article  CAS  Google Scholar 

  8. M. E. Lee, I. Poole, W. S. Truscott, I. R. Cleverley, K. E. Singer, and D. M. Rohlfmg, J. Appl. Phys. 68, 131 (1990).

    Article  CAS  Google Scholar 

  9. S. Zollner, M. Garriga, J. Humlicek, S. Gopalan, and M. Cardona, Phys. Rev. B 43, 4349 (1991).

    Article  CAS  Google Scholar 

  10. A. N. Pikhtin and A. D. Yas’kov, Sov. Phys. Semicond. 12, 622 (1978).

    Google Scholar 

  11. M. Hass and B. W. Henvis, J. Phys. Chem. Solids 23, 1099 (1962).

    Article  CAS  Google Scholar 

  12. K. A. Maslin, C. Patel, and T. J. Parker, Infrared Phys. 32, 303 (1991).

    Article  CAS  Google Scholar 

  13. F. Oswald and R. Shade, Z. Naturf. A 9, 611 (1954).

    Google Scholar 

  14. D. F. Edwards and G. S. Hayne, J. Opt. Soc. Am. 49, 414 (1959).

    Article  Google Scholar 

  15. C. Alibert, M. Skouri, A. Joullie, M. Benouna, and S. Sadiq, J. Appl. Phys. 69, 3208 (1991).

    Article  CAS  Google Scholar 

  16. M. Munoz Uribe, R. S. Miranda, M. B. Zakia, C. F. de Souza, C. A. Ribeiro, J. H. Clerice, and N. B. Patel, Mater. Sci. Eng. B 38, 259 (1996).

    Article  Google Scholar 

  17. M. Munoz Uribe, C. E. M. de Oliveira, J. H. Clerice, R. S. Miranda, M. B. Zakia, M. M. G. de Carvalho, and N. B. Patel, Electron. Lett. 32, 262 (1996).

    Article  Google Scholar 

  18. W. M. Becker, A. K. Ramdas, and H. Y. Fan, J. Appl. Phys. 32, 2094 (1961).

    Article  CAS  Google Scholar 

  19. Z. Bachan, E. Kierzek-Pecold, and J. Kol’odziejczak, Phys. Status Solidi 42, K101 (1970).

    Article  CAS  Google Scholar 

  20. A. M. Fox, A. C. Maciel, J. F. Ryan, and T. Kerr, Appl. Phys. Lett. 51, 430 (1987).

    Article  CAS  Google Scholar 

  21. C. Ghezzi, R. Magnanini, A. Parisini, B. Rotelli, L. Tarricone, A. Bosacchi, and S. Franchi, Phys. Rev. B 52, 1463 (1995).

    Article  Google Scholar 

  22. Y.-M. Sun, W.-J. Jiang, and M.-C. Wu, J. Appl. Phys. 80, 1731 (1996).

    Article  CAS  Google Scholar 

  23. C. Ghezzi, R. Magnanini, A. Parisini, B. Rotelli, L. Tarricone, A. Bosacchi, and S. Franchi, Semicond. Sci. Technol. 12, 858 (1997).

    Article  CAS  Google Scholar 

  24. M. Cardona and G. Harbeke, J. Appl. Phys. 34, 813 (1963).

    Article  Google Scholar 

  25. E. Haga and H. Kimura, J. Phys. Soc. Jpn 19, 1596 (1964).

    Article  CAS  Google Scholar 

  26. M. Cardona, J. Appl. Phys. 32, 2151 (1961).

    Article  Google Scholar 

  27. S. S. Vishnubhatla and J. C. Woolley, Can. J. Phys. 46, 1769 (1968).

    Article  CAS  Google Scholar 

  28. D. E. Aspnes and A. A. Studna, Phys. Rev. B 27, 985 (1983).

    Article  CAS  Google Scholar 

  29. M. Patrini, G. Guizzetti, M. Galli, R. Ferrini, A. Bosacchi, S. Franchi, and R. Magnanini, Solid State Commun. 101, 93 (1997).

    Article  CAS  Google Scholar 

  30. M. Cardona, W. Gudat, E. E. Koch, M. Skibowski, B. Sonntag, and P. Y. Yu, Phys. Rev. Lett. 25, 659 (1970).

    Article  CAS  Google Scholar 

  31. M. Cardona, W. Gudat, B. Sonntag, and P. Y. Yu, in Proc. 10th Int. Conf. Phys emicond., Cambridge, Mass., 1970, edited by S. P. Keller, J. C. Hensel, and F. Stern (U. S. Atomic Energy Commission, Springfield, Va., 1970), p. 209.

    Google Scholar 

  32. W. Gudat, E. E. Koch, P. Y. Yu, M. Cardona, and C. M. Penchina, Phys. Status Solidi B 52, 505 (1972).

    Article  CAS  Google Scholar 

  33. D. E. Aspnes, M. Cardona, V. Saile, M. Skibowski, and G. Sprüssel, Solid State Commun. 31, 99 (1979).

    Article  CAS  Google Scholar 

  34. S. Adachi, J. Appl. Phys. 66, 6030 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Adachi, S. (1999). Gallium Antimonide (GaSb). In: Optical Constants of Crystalline and Amorphous Semiconductors. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5247-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5247-5_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-8567-7

  • Online ISBN: 978-1-4615-5247-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics