Skip to main content
  • 2552 Accesses

Abstract

Aluminum antimonide (AlSb) is a zinc-blende-type semiconductor with an indirect gap of ∼1.6 eV at room temperature [1]. AlSb is one of the less studied III–V compound semiconductors. This is due to its unfavorable chemical behavior and difficulties in bulk crystal growth. However, the interest in this material has considerably increased in recent years due to its phySiCal and technological importance in connection with GaSb/AlSb superlattices [2]. Its related alloys, such as Al x Ga1-x Sb and Al x Ga1-x AS y Sb1-y , are also promising materials for many optoelectronic devices in the near-IR spectral region (see Refs. [3,4]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Numerical Data and Functional Relationships in Science and Technology, edited by K.-H. Hellwege and O. Madelung, Landolt-Börnstein, New Series, Group III, Vol. 17, Pt. a (Springer, Berlin, 1982).

    Google Scholar 

  2. G. P. Schwartz, G. J. Gualtieri, W. A. Sunder, and L. A. Farrow, Phys. Rev. B 36, 4868 (1987).

    Article  CAS  Google Scholar 

  3. A. Joullie, B. Girault, A. M. Joullie, and A. Zien-Eddine, Phys. Rev. B 25, 7830 (1982).

    Article  CAS  Google Scholar 

  4. C. Alibert, M. Skouri, A. Joullie, M. Benouna, and S. Sadiq, J. Appl. Phys. 69, 3208 (1991).

    Article  CAS  Google Scholar 

  5. M.-Z. Huang and W. Y. Ching, J. Phys. Chem. Solids 46, 977 (1985).

    Article  CAS  Google Scholar 

  6. K. Strössner, S. Ves, C. K. Kim, and M. Cardona, Phys. Rev. B 33, 4044 (1986).

    Article  Google Scholar 

  7. S. Zollner, C. Lin, E. Schönherr, A. Böhringer, and M. Cardona, J. Appl. Phys. 66, 383 (1989).

    Article  CAS  Google Scholar 

  8. S. Adachi, J. Appl. Phys. 67, 6427 (1990).

    Article  CAS  Google Scholar 

  9. M. Hass and B. W. Henvis, J. Phys. Chem. Solids 23, 1099 (1962).

    Article  CAS  Google Scholar 

  10. W. J. Turner and W. E. Reese, Phys. Rev. 127, 126 (1962).

    Article  CAS  Google Scholar 

  11. R. F. Blunt, H. P. R. Frederikse, J. H. Becker, and W. R. Hosier, Phys. Rev. 96, 578 (1954).

    Article  CAS  Google Scholar 

  12. W. J. Turner and W. E. Reese, Phys. Rev. 117, 1003 (1960).

    Article  CAS  Google Scholar 

  13. E. Haga and H. Kimura, J. Phys. Soc. Jpn 19, 1596 (1964).

    Article  CAS  Google Scholar 

  14. R. Braunstein and E.O. Kane, J. Phys. Chem. Solids 23, 1423 (1962).

    Article  CAS  Google Scholar 

  15. N. N. Sirota and A. I. Lukomskii, Sov. Phys.-Semicond. 7, 140 (1973).

    Google Scholar 

  16. F. Oswald and R. Schade, Z. Naturf. A 9, 611 (1954).

    Google Scholar 

  17. T. E. Fischer, Phys. Rev. 139, A1228 (1965).

    Article  Google Scholar 

  18. D. E. Aspnes, B. Schwartz, A. A. Studna, L. Derick, and L. A. Koszi, J. Appl. Phys. 48, 3510 (1977).

    Article  CAS  Google Scholar 

  19. M. Cardona, W. Gudat, B. Sonntag, and P. Y. Yu, in Proc. 10th Int. Conf. Phys. Semicond., Cambridge, Mass., 1970, edited by S. P. Keller, J. C. Hensel, and F. Stern (U. S. Atomic Energy Commission, Springfield, Va., 1970), p. 209.

    Google Scholar 

  20. C. M. Herzinger, P. G. Snyder, F. G. Celii, Y.-C. Kao, D. Chow, B. Johs, and J. A. Woollam, J. Appl. Phys. 79, 2663 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Adachi, S. (1999). Aluminum Antimonide (AISb). In: Optical Constants of Crystalline and Amorphous Semiconductors. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5247-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5247-5_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-8567-7

  • Online ISBN: 978-1-4615-5247-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics