Skip to main content

Part of the book series: The Handbooks of Fuzzy Sets Series ((FSHS,volume 5))

Abstract

In accordance with Tarski point of view, in this chapter the theory of closure operators is proposed as a unifying tool for fuzzy logics. Indeed, let F be the set of formulas of a given language. Then an abstract fuzzy logic is defined by a fuzzy semantics (i.e. a class of valuations of the formulas in F) and by a closure operator in the lattice of the fuzzy subsets of F (we call deduction operator). One proves that Pavelka’s logic, similarity logic and graded consequence theory can be represented in this way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Biacino L. (1993). Generated envelopes, Journal of Math. Anal. Appl., 172, 179–190.

    Article  MathSciNet  MATH  Google Scholar 

  • Biacino L. and Gerla G. (1984). Closure systems and L-subalgebras, Information Sciences, 32, 181–195.

    Article  MathSciNet  Google Scholar 

  • Biacino L. and Gerla G. (1992). Generated necessities and possibilities, International Journal of Intelligent Systems, 7, 445–454.

    Article  MATH  Google Scholar 

  • Biacino L. and Gerla G. (1996). An extension principle for closure operators, J. of Math. Anal. Appl., 74, 432–440.

    MathSciNet  Google Scholar 

  • Biacino L. and Gerla G. (1998). Logics with approximate premises, International J. of Intell. Syst., 13, 1–10.

    Article  MATH  Google Scholar 

  • Biacino L. and Gerla G. and Ying M.S. (1998). Approximate reasoning based on similarity, submitted.

    Google Scholar 

  • Brown D.J. and Suszko R. (1973). Abstract Logics, Dissertationes Mathematicae, 102, 9–42.

    MathSciNet  Google Scholar 

  • Chang C.C. and Keisler H. J. (1966). Continuous Model Theory, Princeton, Princeton University Press.

    MATH  Google Scholar 

  • Chakraborty M.K. (1988). Use of fuzzy set theory in introducing graded consequence in multiple valued logic, in Fuzzy Logic in Knowledge-Based Systems, Decision and Control, MM. Gupta and T. Yamakawa (eds), North-Holland, Amsterdam, 247–257.

    Google Scholar 

  • Chakraborty M.K. (1995). Graded consequence: further studies. Journal of Applied non-classical Logic, 5 227–237.

    Article  MATH  Google Scholar 

  • Conrad F. (1980). Fuzzy topological concepts, J. Math. Anal. Appl., 74, 432–440.

    Article  MathSciNet  MATH  Google Scholar 

  • Dubois D. and Lang J. and Prade H. (1994). Possibilistic logic, In: D. Gabbay, C. Hogger and J. Robinson (eds.) Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 3. Clarendon Press.

    Google Scholar 

  • Dubois D. and Prade H. (1987). Necessity measures and the resolution principle, IEEE Trans. Systems Man and Cybernetics, 17, 474–478.

    Article  MathSciNet  MATH  Google Scholar 

  • Dubois D. and Prade H. (1988). Possibility Theory, Plenum Press, New York and London.

    Book  MATH  Google Scholar 

  • Dubois D., Esteva F., Garcia P., Godo L and Prade H. (1997). A Logical Approach to Interpolation Based on Similarity Relations, Int. J. Approximate Reasoning, 17, 1–36.

    Article  MathSciNet  MATH  Google Scholar 

  • Esteva F., Garcia P., Godo L. and Rodriguez R. (1997). A Modal Account of Similarity-Based Reasoning, Int. J. Approximate Reasoning, 16, 235–260.

    Article  MathSciNet  MATH  Google Scholar 

  • Ferrante F., Gerla G. and Sessa I. M. (1998). Similarity-based Unification, submitted.

    Google Scholar 

  • Gerla G. (1994). An extension principle for fuzzy logics, Mathematical Logic Quarterly, 40, 357–80.

    Article  MathSciNet  MATH  Google Scholar 

  • G. Gerla (1998). Closure operators, fuzzy logic and constraints, to appear on the book Fuzzy Sets, Logics, and Knowledge-Based Reasoning.

    Google Scholar 

  • Gerla G. (1996). Closure operators, fuzzy logic and constraints, to appear in Fuzzy Sets, Logics and Reasoning about knowledge.

    Google Scholar 

  • Gerla G. (1997). Graded consequence relations and closure operators, Journal of Applied non-classical Logic, 6, 369–379.

    Article  MathSciNet  Google Scholar 

  • Gerla, G. (1997), Probability-like functionals and fuzzy logic, J. of Math. Anal. Appl., 216, 438–465.

    Article  MathSciNet  MATH  Google Scholar 

  • Gerla G. and Scarpati L. (1998). Extending the extension principles, Inf. Sciences, 106, 49–69.

    Article  MathSciNet  MATH  Google Scholar 

  • Goguen J.A. (1968/69). The logic of inexact concepts, Synthese, 19, 325–373.

    Article  Google Scholar 

  • Murali V. (1991). Lattice of fuzzy subalgebras and closure systems in Ix, Fuzzy Sets and Systems, 41, 101–111.

    Article  MathSciNet  MATH  Google Scholar 

  • Negoita C.V. and Ralescu D.A. (1975). Representation theorems for fuzzy concepts, Kybemetes, 4, 169–174.

    MATH  Google Scholar 

  • Pavelka J. (1979). On fuzzy logic I: Many-valued rules of inference, Zeitschr. f. math. Logik und Grundlagen d. Math., Bd.25, 45–52.

    Article  MathSciNet  MATH  Google Scholar 

  • Ramik J. (1983). Extension principle and fuzzy-mathematical programming, Kybernetika, 19, 513–25.

    MathSciNet  Google Scholar 

  • Tarski A. (1956). Logic, semantics and metamathematics, Clarendon Press, Oxford.

    Google Scholar 

  • Ward M. (1942). The closure operators of a lattice, Annals of Mathematics, 43, 191–196.

    Article  MathSciNet  MATH  Google Scholar 

  • Ying M.S. (1994). A logic for approximate reasoning, The Journal of Symbolic Logic, 59, 830–837

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh L.A. (1965). Fuzzy Sets, Information and Control, 12, 338–353.

    Article  MathSciNet  Google Scholar 

  • Zadeh, L.A. (1975). Fuzzy logic and approximate reasoning, Synthese, 30, 407–428.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Biacino, L., Gerla, G. (1999). Closure Operators in Fuzzy Set Theory. In: Bezdek, J.C., Dubois, D., Prade, H. (eds) Fuzzy Sets in Approximate Reasoning and Information Systems. The Handbooks of Fuzzy Sets Series, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5243-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5243-7_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7390-2

  • Online ISBN: 978-1-4615-5243-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics