Skip to main content

On the Stochastic Control of Quantum Ensembles

  • Chapter
System Theory

Abstract

Over the last 50 years quantum mechanics has come to be applied in very sophisticated ways. Some of these applications involve the control and observation of quantum systems using subtle noncommutative effects. However only recently has there been any attempt to look at these from a control theory perspective. In this paper we cast some of the main ideas from Nuclear Magnetic Resonance (NMR) as applied to imaging and spectroscopy in a system theoretic framework. For example, NMR spectroscopy is taken to be a system identification problem. Many key aspects of high resolution NMR spectroscopy involve manipulating and controlling nuclear spins in such a way as to generate a suitable signal for the identification problem. This active control of nuclear spin is presented as a problem in the control of nonlinear systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Goldman, Quantum Description of High-Resolution NMR in Liquids, Oxford University Press, 1988.

    Google Scholar 

  2. R. Montgomery, “Shortest loops with a fixed holonomy,” Tech. Rep. MSRI 01224–89, Mathematical Sciences Research Institute, Berkeley, Nov. 1988.

    Google Scholar 

  3. B.Maraviglia, ed., Lectures in Pulsed NMR - 2nd Edition, Proceedings of School of Physics Ernico Fermi, World Scientific, 1993.

    Google Scholar 

  4. R.W. Brockett, “Notes on Stochastic Processes on Manifolds,” in Systems and Control in the Twenty-First Century, eds. C.I. Byrnes et al., Birkäuser, Boston, 1997.

    Google Scholar 

  5. R. W. Brockett, “On Stochastic Stabilization,” Proceedings, of IEEE Conference on Decision and Control, pp. 2243–2246, 1989.

    Google Scholar 

  6. R.W. Brockett, “Dynamical Systems and Their Associated Automata,” in Systems and Networks: Mathematical Theory and Applications, Vol. 77, eds. U. Helmke and R. Mennicken and J. Saurer, Academie-Verlag, Berlin, pp.46–69, 1994.

    Google Scholar 

  7. S.K. Mitter, “On the Analogy Between Mathematical Problems of Non-Linear Filtering and Quantum Physics,” in Ricerche Di Automatica, ed. R.W. Brockett, Oderisi Gubbio, Italy, pp. 163, 1979.

    Google Scholar 

  8. H. Hahn, Phys. Rev., Vol. 80, pp. 580, 1950.

    Article  MATH  Google Scholar 

  9. E.M. Purcell, Phys. Rev., Vol. 69, pp. 681, 1946.

    Article  Google Scholar 

  10. H.Y. Carr and E.M. Purcell, Phys. Rev., Vol. 94, pp. 630, 1954.

    Article  Google Scholar 

  11. A. G. Butkovskiy and Y.I. Samoilenko, Control of Quantum Mechanical Processes and Systems, Kluwer Academic, Dordrecht, 1990.

    Book  MATH  Google Scholar 

  12. G. Huang and T. Tarn and J.Clark, J. Math. Phys., Vol. 24, pp. 2608, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Stoustrup and O. Schedletsky and S.J. Glaser and C. Griesinger and N.C. Nielsen and O.W. Sørensen,“Generalized bound on quantum dynamics: Efficiency of unitary transformations between non hermitian states,” Physical Review Letters, No. 74, pp. 2921–2924, 1995.

    Article  Google Scholar 

  14. S.J. Glaser and T. Schulte-Herbrüggen and M. Sieveking and O. Schedletzky and N.C. Nielsen and O.W. Sørensen and C. Griesinger, “Unitary Control in Quantum Ensembles, Maximizing Signal Intensity in Coherent Spectroscopy,” Science, No. 280, pp. 421–424, 1998.

    Article  Google Scholar 

  15. Thomas Schutle Herbrüggen, “Aspects and Prospects of High Resolution Nuclear Magnetic Resonance,” PhD. thesis, ETH Zurich, 1998.

    Google Scholar 

  16. Seth Lloyd, “Universal Quantum Simulators,” Science, Vol. 273, pp. 1073–1078, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  17. Seth Lloyd, “Almost Any quantum logic Gate is Universal,” Physical Review Letters, Vol. 75, No. 2, Jul., pp. 346–349, 1995.

    Article  Google Scholar 

  18. Seth Lloyd and Jean-Jacques E. Slotine, “Quantum Feedback with weak measurements,” Tech. Rep. MIT, 1999.

    Google Scholar 

  19. O.W. Sørensen and G.W. Eich and M.H. Levitt and G. Bodenhausen and R.R. Ernst, in Prog. NMR Spectroscopy, Vol. 16, pp. 163, 1983.

    Article  Google Scholar 

  20. R.R. Ernst and G. Bodenhausen and A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions, Oxford University Press, 1987.

    Google Scholar 

  21. S.J. Glaser and J.J. Quant, in Advances in Magnetic and Optical Resonance, Vol. 19, ed. W.S. Warren, Academic Press, pp. 59–252, 1996.

    Chapter  Google Scholar 

  22. David Cory and A.F. Fahmy and T.F. Havel, “Ensemble Quantum Computing by NMR spectroscopy,” Proc. Natl. Acad . Sci., Vol. 94, Mar., pp. 1634–1639, 1997.

    Article  Google Scholar 

  23. V. Ramakrishna and M.V. Salapaka and M. Dahleh and H. Rabitz and A. Pierce, Physical Review A, Vol. 51, pp. 960, 1995.

    Article  Google Scholar 

  24. H. Rabitz, Nature, Vol. 366, pp. 304, 1993.

    Article  Google Scholar 

  25. G. Taubes, Science, Vol. 275, pp. 307, 1997.

    Article  Google Scholar 

  26. K. Blum, Density Matrix Theory and Applications, Plenum, New York, 1981.

    MATH  Google Scholar 

  27. D.P. Weitekamp and J.R. Garbow and A. Pines, J. Chem. Phys., Vol. 77, pp. 2870, 1982.

    Article  Google Scholar 

  28. A. Schweiger, in Modern Pulsed and Coninuous Wave Electron Spin Resonance, ed. M.K. Bowman, Wiley, London, pp. 43–118, 1990.

    Google Scholar 

  29. R. W. Brockett, “Dynamical Systems That Sort Lists, Diagonalize Matrics, and Solve Linear Programming Problems,” Linear algebra and its applications, Vol. 146, pp. 79–91, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  30. Warren S. Warren and Herschel Rabitz and Mohammed Dahleh, “Coherent Control of Quantum Dynamics: The Dream is Alive,” Science, Vol. 259, pp. 1581–1589, 1993.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brockett, R., Khaneja, N. (2000). On the Stochastic Control of Quantum Ensembles. In: Djaferis, T.E., Schick, I.C. (eds) System Theory. The Springer International Series in Engineering and Computer Science, vol 518. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5223-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5223-9_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7380-3

  • Online ISBN: 978-1-4615-5223-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics