Skip to main content

Discrete Choice Methods and their Applications to Short Term Travel Decisions

  • Chapter
Handbook of Transportation Science

Part of the book series: International Series in Operations Research & Management Science ((ISOR,volume 23))

Abstract

Modeling travel behavior is a key aspect of demand analysis, where aggregate demand is the accumulation of individuals’ decisions. In this chapter, we focus on “short-term” travel decisions. The most important short-term travel decisions include choice of destination for a non-work trip, choice of travel mode, choice of departure time and choice of route. It is important to note that short-term decisions are conditional on long-term travel and mobility decisions such as car ownership and residential and work locations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, S. P., de Palma, A. and Thisse, J.-F. (1992). Discrete Choice Theory of Product Differentiation, MIT Press, Cambridge, Ma.

    Google Scholar 

  • Antoniou, C, Ben-Akiva, M.E., Bierlaire, M., and Mishalani, R. (1997) Demand Simulation for Dynamic Traffic Assignment. Proceedings of the 8th IFAC/IFIP/IFORS symposium on transportation systems.

    Google Scholar 

  • Ben-Akiva, M. and François, B. (1983). μhomogeneous generalized extreme value model, Working paper, Department of Civil Engineering, MIT, Cambridge, Ma.

    Google Scholar 

  • Ben-Akiva, M. E. (1973). Structure of passenger travel demand models, PhD thesis, Department of Civil Engineering, MIT, Cambridge, Ma.

    Google Scholar 

  • Ben-Akiva, M. E. (1974). Structure of passenger travel demand models, Transportation Research Record 526.

    Google Scholar 

  • Ben-Akiva, M. E. and Boccara, B. (1995). Discrete choice models with latent choice sets, International Journal of Research in Marketing 12: 9–24.

    Article  Google Scholar 

  • Ben-Akiva, M. E. and Bolduc, D. (1996). Multinomial probit with a logit kernel and a general parametric specification of the covariance structure, presented at the 3rd International Choice Symposium, Columbia University.

    Google Scholar 

  • Ben-Akiva, M. E. and Lerman, S. R. (1985). Discrete Choice Analysis: Theory and Application to Travel Demand, MIT Press, Cambridge, Ma.

    Google Scholar 

  • Ben-Akiva, M. E., Bergman, M. J., Daly, A. J. and Ramaswamy, R. (1984). Modeling inter-urban route choice behaviour, in J. Volmuller and R. Hamerslag (eds), Proceedings from the ninth international symposium on transportation and traffic theory, VNU Science Press, Utrecht, Netherlands, pp. 299–330.

    Google Scholar 

  • Ben-Akiva, M. E., Cyna, M. and de Palma, A. (1984). Dynamic model of peak period congestion, Transportation Research B 18(4-5): 339–355.

    Article  Google Scholar 

  • Bierlaire, M. (1995). A robust algorithm for the simultaneous estimation of hierarchical logit models, GRT Report 95/3, Department of Mathematics, FUNDP.

    Google Scholar 

  • Bierlaire, M. (1998). Discrete choice models, in M. Labbé, G. Laporte, K Tanczos and Ph. Toint (eds), Operations Research in Traffic and Transportation Management, Vol. 166 of NATO ASI Series, Series F: Computer and Systems Sciences, Springer Verlag, pp. 203–227

    Google Scholar 

  • Bierlaire, M. and Vandevyvere, Y. (1995). HieLoW: the interactive user’s guide, Transportation Research Group-FUNDP, Namur.

    Google Scholar 

  • Bierlaire, M., Lotan, T. and Toint, Ph. L. (1997). On the overspecification of multinomial and nested logit models due to alternative specific constants, Transportation Science 31(4): 363–371.

    Article  Google Scholar 

  • Bolduc, D., Fortin, B. and Fournier, M.-A. (1996). The effect of incentive policies on the practice location of doctors: A multinomial Probit analysis, Journal of labor economics 14(4): 703.

    Article  Google Scholar 

  • Bradley, M. A. and Daly, A. (1991). Estimation of logit choice models using mixed stated preferences and revealed preferences information, Methods for understanding travel behaviour in the 1990’s, International Association for Travel Behaviour, Québec, pp.∼116–133. 6th international conference on travel behaviour.

    Google Scholar 

  • Burrell, J. E. (1968). Multipath route assignment and its application to capacity restraint. Proceedings of the 4th international symposium on the theory of road traffic flow, Karslruhe, Germany.

    Google Scholar 

  • Cardell and Dunbar (1980). Measuring the societal impacts of automobile downsizing, Transportation Research A 14(5-6): 423–434.

    Article  Google Scholar 

  • Cascetta, E. and Papola, A. (1998). Random utility models with implicit availability/perception of choice alternatives for the simulation of travel demand, Technical report, Universita degli Studi di Napoli Federico II.

    Google Scholar 

  • Cascetta, E., Nuzzolo, A. and Biggiero, L. (1992). Analysis and Modeling of Commuters’ Departure Time and Route Choice in Urban Networks. Proceedings of the Second International CAPRI Seminar on Urban Traffic Networks.

    Google Scholar 

  • Cascetta, E., Nuzzolo, A., Russo, F. and Vitetta, A. (1996). A modified logit route choice model overcoming path overlapping problems. Specification and some calibration results for interurban networks, Proceedings of the 13th International Symposium on the Theory of Road Traffic Flow (Lyon, France).

    Google Scholar 

  • Chang, G. L. and Mahmassani, H. S. (1986). Experiments with departure time choice dynamics of urban commuters, Transportation Research B 20(4): 297–32

    Article  Google Scholar 

  • Chang, G. L. and Mahmassani, H. S. (1988). Travel time prediction and departure time adjustment dynamics in a congested traffic system, Transportation Research B 22(3): 217–232.

    Article  Google Scholar 

  • Daganzo, C. F. and Sheffi, Y. (1977). On stochastic models of traffic assignment. Transportation Science 11(3): 253–274.

    Article  Google Scholar 

  • Daly, A. (1987). Estimating “tree” logit models, Transportation Research B 21(4): 251–268.

    Article  Google Scholar 

  • de Palma, A., Khattak, A. J. and Gupta, D. (1997). Commuters’ departure time decisions in Brussels, Belgium, Transportation Research Record 1607: 139–146.

    Article  Google Scholar 

  • Dial, R. B. (1969). Algorithm 360: shortest path forest with topological ordering., Communications of ACM 12: 632–633.

    Article  Google Scholar 

  • Dial, R. B. (1971). A probabilistic multipath traffic assignment algorithm which obviates path enumeration, Transportation Research 5(2): 83–111.

    Article  Google Scholar 

  • Dijkstra, E. W. (1959). A note on two problems in connection with graphs, Numerische Mathematik 1: 269–271.

    Article  Google Scholar 

  • Gumbel, E. J. (1958). Statistics of Extremes, Columbia University Press, New York.

    Google Scholar 

  • Hendrickson, C. and Kocur, G. (1981). Schedule delay and departure time decisions in a deterministic model, Transportation Science 15: 62–77.

    Article  Google Scholar 

  • Hendrickson, C. and Plank, E. (1984). The flexibility of departure times for work trips, Transportation Research A 18: 25–36.

    Article  Google Scholar 

  • Hensher, D. A. and Johnson, L. W. (1981). Applied discrete choice modeling, Croom Helm, London.

    Google Scholar 

  • Horowitz, J. L., Koppelman, F. S. and Lerman, S. R. (1986). A self-instructing course in disaggregate mode choice modeling, Technology Sharing Program, US Department of Transportation, Washington, D.C. 20590.

    Google Scholar 

  • Khattak, A. J. and de Palma, A. (1997). The impact of adverse weather conditions on the propensity to change travel decisions: a survey of Brussels commuters, Transportation Research A 31(3): 181–203.

    Google Scholar 

  • Koppelman, F. S. and Wen, C.-H. (1997). The paired combinatorial logit model: properties, estimation and application, Transportation Research Board, 76th Annual Meeting, Washington DC. Paper #970953.

    Google Scholar 

  • Koppelman, F. S. and Wen, C.-H. (1998). Alternative nested logit models: Structure, properties and estimation, Transportation Research B. (forthcoming).

    Google Scholar 

  • Liu, Y.-H. and Mahmassani, H. (1998). Dynamic aspects of departure time and route decision behavior under ATIS: modeling framework and experimental results, presented at the 77th annual meeting of the Transportation Research Board, Washington DC.

    Google Scholar 

  • Luce, R. (1959). Individual choice behavior: a theoretical analysis, J. Wiley and Sons, New York.

    Google Scholar 

  • Luce, R. D. and Suppes, P. (1965). Preference, utility and subjective probability, in R. D. Luce, R. R. Bush and E. Galanter (eds), Handbook of Mathematical Psychology, J. Wiley and Sons, New York.

    Google Scholar 

  • Manski, C. (1977). The structure of random utility models, Theory and Decision 8: 229–254.

    Article  Google Scholar 

  • McFadden, D. (1978). Modeling the choice of residential location, in A. K. et al. (ed.), Spatial interaction theory and residential location, North-Holland, Amsterdam, pp. 75–96.

    Google Scholar 

  • McFadden, D. (1989). A method of simulated moments for estimation of discrete response models without numerical integration, Econometrica 57(5): 995–1026.

    Article  Google Scholar 

  • McFadden, D. and Train, K. (1997). Mixed multinomial logit models for discrete response, Technical report, University of California, Berkeley, Ca.

    Google Scholar 

  • Nguyen, S. and Pallottino, S. (1987). Traffic assignment for large scale transit networks, in A. Odoni (ed.), Flow control of congested networks, Springer Verlag.

    Google Scholar 

  • Nguyen, S., Pallottino, S. and Gendreau, M. (1998). Implicit Enumeration of Hyperpaths in a Logit Model for Transit Networks. Transportation Science 32(1).

    Google Scholar 

  • Small, K. (1982). The scheduling of consumer activities: work trips, The American Economic Review pp. 467–479.

    Google Scholar 

  • Small, K. (1987). A discrete choice model for ordered alternatives, Econometrica 55(2): 409–424.

    Article  Google Scholar 

  • Swait, J.D. and Ben-Akiva, M. (1987). Incorporating Random Constraints in Discrete Models of Choice Set Generation, Transportation Research B 21(2).

    Google Scholar 

  • Tversky, A. (1972). Elimination by aspects: a theory of choice, Psychological Review 79:281–299.

    Article  Google Scholar 

  • Vovsha, P. (1997). Cross-nested logit model: an application to mode choice in the Tel-Aviv metropolitan area, Transportation Research Board, 76th Annual Meeting, Washington DC.Paper #970387.

    Google Scholar 

  • Whynes, D., Reedand, G. and Newbold, P. (1996). General practitioners’ choice of referral destination: A Probit analysis, Managerial and Decision Economics 17(6): 587.

    Article  Google Scholar 

  • Yai, T., Iwakura, S. and Morichi, S. (1997). Multinomial Probit with structured covariance for route choice behavior, Transportation Research B 31(3): 195–208.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ben-Akiva, M., Bierlaire, M. (1999). Discrete Choice Methods and their Applications to Short Term Travel Decisions. In: Hall, R.W. (eds) Handbook of Transportation Science. International Series in Operations Research & Management Science, vol 23. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5203-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5203-1_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7370-4

  • Online ISBN: 978-1-4615-5203-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics