Skip to main content

Part of the book series: International Series in Operations Research & Management Science ((ISOR,volume 19))

  • 831 Accesses

Abstract

One of the most spectacular achievements of Julian Keilson is his development of the perturbation method based on the compensation kernel. The method is mathematically intriguing and also very convenient for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asmussen, S. Applied Probability and Queues. Wiley, New York, 1987.

    MATH  Google Scholar 

  2. Bertsimas, D. J., Keilson, J., et al. Transient and busy period analysis of the GI/G/1 queue as a Hilbert factorization problem. J. Appl. Prob. 28, 873–885, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  3. Blumenthal, R. M., and Getoor, R. K. Markov Processes and Potential Theory. Academic Press, New York, 1968.

    MATH  Google Scholar 

  4. Cai, H. On Reviving Markov Processes and Applications. Ph.D. thesis, Department of Mathematics, University of Maryland, 1987.

    Google Scholar 

  5. Feigin, P. D., and Rubinstein, E. Equivalent description of perturbed Markov processes. Stoch. Proc. Appl. 9, 261–272, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  6. Gerontidis, I.I. Semi-Markov replacement chains. Adv. Appl. Prob. 26, 728–755, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  7. Hille, E., and Phillips, R. S. Functional Analysis and Semi-Groups. Colloquium, American Mathematics Society, 1957.

    Google Scholar 

  8. Keilson, J. The homogeneous random walk on the half-line and the Hilbert problem. Bull. I. S. I. 113, 33rd Session, paper 113, 1–13, 1961.

    Google Scholar 

  9. Keilson, J. The use of Green’s Functions in the study of the bounded random walks with application to queueing theory. J. Math. Phys. 41, 42–52, 1962.

    MathSciNet  MATH  Google Scholar 

  10. Keilson, J. An alternative to Wiener—Hopf methods for the study of bounded processes. J. Appl. Prob. 1, 85–120, 1964.

    Article  MathSciNet  MATH  Google Scholar 

  11. Keilson, J. Green’s Function Methods in Probability Theory. Griffin, 1965.

    Google Scholar 

  12. Keilson, J. The role of Green’s Functions in congestion theory. In: Smith, W. L., and Wilkinson, W. E. (eds), Congestion Theory. University of North Carolina Press, Chapel Hill, NC, 1965, pp. 43–71.

    Google Scholar 

  13. Keilson, J. Markov chain models — rarity and exponentiality. Appl. Math. Sci. 28, 1979.

    Google Scholar 

  14. Keilson, J., and Graves, S. C. The compensation method applied to a one-product production/inventory problem. Math. Oper. Res. 6, 246–262, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  15. Keilson, J., and Syski, R. Compensation measures in the theory of Markov chains. Stoch. Proc. Appl. 2, 59–72, 1974.

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, N. Decomposition Theorems for Standard Processes. Ph.D. thesis, Department of Mathematics, University of Maryland, 1995.

    Google Scholar 

  17. Loeve, M. Probability Theory. Van Nostrand, 1963.

    Google Scholar 

  18. Neuts, M. F. Probability distributions of phase type. In: Liber Amicorum Professor Emeritus H. Florin, Department of Mathematics, University of Louvain, Belgium, 1975, pp. 173–206.

    Google Scholar 

  19. Svoronou, A. Multivariate Markov Processes via the Green’s Function Method. Ph.D. thesis, Department of Statistics, University of Rochester, New York, 1990.

    Google Scholar 

  20. Syski, R. Perturbation models. Stochast. Proc. Appl. 5, 93–129, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  21. Syski, R. Ergodic potential. Stochast. Proc. Appl. 7, 311–336, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  22. Syski, R. Phase-type distributions and perturbation model. Appl. Math. Warsaw 17(3), 377–399, 1982.

    MathSciNet  MATH  Google Scholar 

  23. Syski, R. A note on revival models for Markov chains. Am. J. Math. Mgt. Sci. 10, 159–183, 1990.

    MathSciNet  MATH  Google Scholar 

  24. Syski, R. Passage Times for Markov Chains. IOS Press, Amsterdam, 1992.

    MATH  Google Scholar 

Download references

Authors

Editor information

J. G. Shanthikumar Ushio Sumita

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Syski, R., Liu, N. (1999). Comments on the Perturbation Method. In: Shanthikumar, J.G., Sumita, U. (eds) Applied Probability and Stochastic Processes. International Series in Operations Research & Management Science, vol 19. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5191-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5191-1_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7364-3

  • Online ISBN: 978-1-4615-5191-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics