Skip to main content

Non-G-Quartet, Non-Sequence Specific Antirestenotic Effects Of Phosphorothioate Oligodeoxynucleotides

  • Chapter
  • 43 Accesses

Part of the book series: Perspectives in Antisense Science ((DARE,volume 3))

Abstract

Phosphorothioate oligodeoxynucleotides (PS ODNs) are isoelectronic congeners of phosphodiester oligonucleotides (1). These compounds are nuclease resistant, soluble in aqueous solution, and capable of engaging in Watson-Crick base pair hybridization (1). PS ODNs directed against various protooncogenes such as c-myb and c-myc involved in vascular smooth muscle cell (SMC) proliferation have been employed in sequence-specific antisense strategies to inhibit restenosis after balloon injury (2). Several studies have demonstrated that PS ODNs inhibit in vitro vascular SMC proliferation (3–8). In one study, there was sustained inhibition of SMC proliferation lasting several days after only a single two hour exposure to antisense nonmuscle myosin heavy chain and c-myb oligonucleotides (8). Furthermore, PS ODNs have inhibited restenosis after balloon injury in the rat carotid artery and porcine models (4,5,9).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stein CA, Cheng Y-C. Antisense oligonucleotides as therapeutic agents — Is the bullet really magical? Science (Wash DC) 1993;261:1004–1012.

    Article  CAS  Google Scholar 

  2. Villa AE, Guzman LA, Poptic EJ, Labhasetwar V, D’Souza S, Farrell CL, Plow EF, Levy RJ, DiCorleto PE, Topol EJ. Effects of antisense c-myb oligonucleotides on vascular smooth muscle cell proliferation and response to vessel wall injury. Circ Res 1995;76:505–513.

    Article  PubMed  CAS  Google Scholar 

  3. Shi Y, Hutchinson HG, Hall DJ, Zalewski A. Downregulation of c-myc expression by antisense oligonucleotides inhibits proliferation of human smooth muscle cells. Circulation 1993;88:1190–1195.

    Article  PubMed  CAS  Google Scholar 

  4. Bennett MR, Anglin S, McEwan JR, Jagoe R, Newby AC, Evan GI. Inhibition of vascular smooth muscle cell proliferation in vitro and in vivo by c-myc antisense oligonucleotides. J Clin Invest 1994;93:820–828.

    Article  PubMed  CAS  Google Scholar 

  5. Simons M, Edelman ER, DeKeyser J-L, Langer R, Rosenberg RD. Antisense c-myb oligonucleotides inhibit intimai arterial smooth muscle cell accumulation in vivo. Nature (Lond) 1992;359:67–70.

    Article  CAS  Google Scholar 

  6. Ebbecke M, Unterberg C, Buchwald A, Stohr S, Wiegand V. Antiproliferative effects of a c-myc antisense oligonucleotide on human arterial smooth muscle cells. Basic Res Cardiol 1992;87:585–591.

    Article  PubMed  CAS  Google Scholar 

  7. Biro S, Fu YM, Yu ZX, Epstein SE. Inhibitory effects of antisense oligonucleotides targeting c-myc mRNA on smooth muscle cell proliferation and migration. Proc Natl Acad Sci USA 1993;90:654–658.

    Article  PubMed  CAS  Google Scholar 

  8. Simons M, Rosenberg RD. Antisense nonmuscle myosin heavy chain and c-myb oligonucleotides suppress smooth muscle cell proliferation in vitro. Circ Res 1992;70:835–843.

    Article  PubMed  CAS  Google Scholar 

  9. Shi Y, Fard A, Galeo A, Hutchinson HG, Vernani P, Dodge GR, Hall DJ, Shaheen F, Zalewski A. Transcatheter delivery of c-myc antisense oligomers reduces neointimal formation in a porcine model of coronary artery balloon injury. Circulation 1994;90:944–951.

    Article  PubMed  CAS  Google Scholar 

  10. Burgess TL, Fisher EF, Ross SL, Bready JV, Qian Y-X, Bayewitch LA, Cohen AM, Herrera CJ, Hu SS-F, Kramer TB, et al. The antiproliferative activity of c-myb and c-myc antisense oligonucleotides in smooth muscle cells is caused by a nonantisense mechanism. Proc Natl Acad Sci USA 1995;92:4051–4055.

    Article  PubMed  CAS  Google Scholar 

  11. Guvakova MA, Yakubov LA, Vlodavsky I, Tonkinson JL, Stein CA. Phosphorothioate oligodeoxynucleotides bind to basic fibroblast growth factor, inhibit its binding to cell surface receptors, and remove it from low affinity binding sites on extracellular matrix. J Biol Chem 1995;270:2620–2627.

    Article  PubMed  CAS  Google Scholar 

  12. Rockwell P, O’Connor WJ, King K, Goldstein NI, Zhang LM, Stein CA. Cell-surface perturbations of the epidermal growth factor and vascular endothelial growth factor receptors by phosphorothioate oligodeoxynucleotides. Proc Natl Acad Sci USA 1997;94:6523–6528.

    Article  PubMed  CAS  Google Scholar 

  13. Wang W, Chen H-J, Schwartz A, Cannon PJ, Stein CA, Rabbani LE. Sequence-independent inhibition of in vitro vascular smooth muscle cell proliferation, migration, and in vivo neointimal formation by phosphorothioate oligo-deoxynucleotides. J Clin Invest 1996;98:443–450.

    Article  PubMed  CAS  Google Scholar 

  14. Gao W-Y, Storm C, Egan W, Cheng Y-C. Cellular pharmacology of phosphorothioate homooligodeoxynucleotides in human cells. Mol Pharmacol 1992;43:45–50.

    Google Scholar 

  15. Ross R. The pathogenesis of atherosclerosis: A perspective for the 1990s. Nature 1993;362:801–809.

    Article  PubMed  CAS  Google Scholar 

  16. Bennett MR, Lindner V, DeBlois D, Reidy MA, Schwartz SM. Effect of phosphorothioated oligonucleotides on neointima formation in the rat carotid artery: Dissecting the mechanism of action. Arterioscler Thromb Vasc Biol 1997;17:2326–2332.

    Article  PubMed  CAS  Google Scholar 

  17. Wang W, Chen HJ, Schwartz A, Cannon PJ, Stein CA, Rabbani LE. Inhibitory non-sequence-specific effects of cytidine homopolymers on in vivo neointimal formation. Antisense and Nucleic Acid Drug Development 1997;7:559–566.

    Article  PubMed  CAS  Google Scholar 

  18. Wang W, Chen H-J, Warshofsky M, Schwartz A, Stein CA, Rabbani LE. Effects of S-dC28 on vascular smooth muscle cell adhesion and plasminogen activator production. Antisense and Nucleic Acid Drug Development 1997;7:101–107.

    Article  PubMed  CAS  Google Scholar 

  19. Khaled Z, Benimetskaya L, Zeltser R, Khan T, Sharma HW, Narayanan R, Stein CA. Multiple mechanisms may contribute to the cellular antiadhesive effects of phosphorothioate oligodeoxynucleotides. Nucleic Acids Res 1996;24:737–745.

    Article  PubMed  CAS  Google Scholar 

  20. Engel J. Laminins and other strange proteins. Biochemistry 1992;31:10643–10651.

    Article  PubMed  CAS  Google Scholar 

  21. Jawien AD, Bowen-Pope DF, Lindner V, Schwartz SM, Clowes AW. Platelet-derived growth factor promotes smooth muscle cell migration and intimai thickening in a rat model of balloon angioplasty. J Clin Invest 1992;89:507–511.

    Article  PubMed  CAS  Google Scholar 

  22. Jackson CL, Reidy MA. The role of plasminogen activation in smooth muscle cell migration after arterial injury. Ann NY Acad Sci 1992;667:141–150.

    Article  PubMed  CAS  Google Scholar 

  23. Reuning U, Bang NU. Regulation of the urokinase-type plasminogen activator receptor on vascular smooth muscle cells is under the control of thrombin and other mitogens. Arteriosclerosis Thromb 1992;12:1161–1170

    Article  CAS  Google Scholar 

  24. O’Grady RL, Upfold LI, Stephens RW. Rat mammary carcinoma cells secrete active collagenase and activate latent enzyme in the stroma via plasminogen activation. Int J Cancer 1981;28:509–515.

    Article  PubMed  Google Scholar 

  25. Moscatelli D, Rifkin DB. Membrane and matrix localization of proteinases: A common theme in tumor cell invasion and angiogenesis. Biochem Biophys Acta 1988;948:67–85.

    PubMed  CAS  Google Scholar 

  26. Grobmyer SR, Kuo A, Orishimo M, Okada SS, Cines DB, Barnathan ES. Determinants of binding and internalization of tissue-type plasminogen activator by human vascular smooth muscle and endothelial cells. J Biol Chem 1993;268:13291–13300.

    PubMed  CAS  Google Scholar 

  27. Sperti G, Van Leeuwen RTJ, Quax PHA, Maseri A, Kluft C. Cultured rat aortic vascular smooth muscle cells digest naturally produced rat extracellular matrix: Involvement of plasmin dependent mechanisms and plasmin independent mechanisms. Circ Res 1992;71:385–392.

    Article  PubMed  CAS  Google Scholar 

  28. Okada H, Nordt T, Lundgren CH, Fujii S. Human aortic vascular smooth muscle cells digest extracellular matrix by elaboration of plasminogen activators: Implications for atherogenesis. J Thromb Thrombolysis 1995;2:107–112.

    Article  PubMed  CAS  Google Scholar 

  29. Schleef RA, Birdwell CR. The effect of proteases on endothelial cell migration in vitro. Exp Cell Res 1982;141:503–508.

    Article  PubMed  CAS  Google Scholar 

  30. Jackson CL, Raines EW, Ross R, Reidy MA. Role of endogenous platelet-derived growth factor in arterial smooth muscle cell migration after balloon catheter injury. Arteriosclerosis Thromb 1993;13:1218–1226.

    Article  CAS  Google Scholar 

  31. Clowes AW, Clowes MM, Kirkman TR, Jackson CL, Au YPT, Kenagy R. Heparin inhibits the expression of tissue-type plasminogen activator by smooth muscle cells in injured rat carotid artery. Circ Res 1992;70:1128–1136.

    Article  PubMed  CAS  Google Scholar 

  32. Au YTP, Kenagy RD, Clowes AW. Heparin selectively inhibits the transcription of tissue-type plasminogen activator in primate arterial smooth muscle cells during mitogenesis. J Biol Chem 1992;267:3438–3444.

    PubMed  CAS  Google Scholar 

  33. Kost C, Stuber W, Ehrlich H, Pannekoek H, Preissner KT. Mapping of binding sites for heparin, plasminogen-activator inhibitor-1 and plasminogen to vitronectin’s heparin binding region reveals a novel vitronectin-dependent feedback mchanism for the control of plasmin formation. J Biol Chem 1992;267:12098–13105.

    PubMed  CAS  Google Scholar 

  34. Kost C, Benner K, Stockmann A, Linder D, Preissner KT. Limited plasmin proteolysis of vitronectin: Characterization of the adhesion protein as morpho-regulatory and angiostatin-binding factor. Eur J Biochem 1996;236:682–688.

    Article  PubMed  CAS  Google Scholar 

  35. Wang W, Chen HJ, Sun J, Benimetskaya L, Schwartz A, Cannon P, Stein CA, Rabbani LE. A comparison of guanosine-quartet inhibitory effects versus cytidine homopolymer inhibitory effects on rat neointimal formation. Antisense and Nucleic Acid Drug Development 1998; in press.

    Google Scholar 

  36. Benimetskaya L, Berton M, Kolbanovsky A, Benimetsky S, Stein CA. Formation of a G-tetrad and higher order structures correlates with biological activity of the RelA (NF-kappaB p65) ‘antisense’ oligodeoxynucleotide. Nucleic Acids Res 1997;25:2648–2656.

    Article  PubMed  CAS  Google Scholar 

  37. Jin R, Gaffney B, Wang C, Jones R, Bresslauer K. Thermodynamics and structure of a DNA tetraplex: a spectroscopic and calorimetric study of the tetramolecular complexes of d(TG3T) and d(TG3T2G3T). Proc Natl Acad Sci USA 1992;89:8832–8836.

    Article  PubMed  CAS  Google Scholar 

  38. Sen D, Gilbert W. Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature 1988;334:364–366.

    Article  PubMed  CAS  Google Scholar 

  39. Sen D, Gilbert W. A sodium-potassium switch in the formation of four-stranded G4-DNA. Nature 1990;334:410–414.

    Article  Google Scholar 

  40. Sen D, Gilbert W. Novel DNA superstructures formed by telomere-like oligomers. Biochemistry 1992;31:65–70.

    Article  PubMed  CAS  Google Scholar 

  41. Sundquist W, Klug A. Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loops. Nature 1989;342:825–829.

    Article  PubMed  CAS  Google Scholar 

  42. Williamson J, Raghuraman M, Cech T. Monovalent cation-induced structure of telomeric DNA: the G-quartet mdoel. Cell 1989;59:871–880.

    Article  PubMed  CAS  Google Scholar 

  43. Murchie A, Lilley A. Tetraplex folding of telomere sequences and the inclusion of adenine bases. Embo J 1994;13:993–1001.

    PubMed  CAS  Google Scholar 

  44. Lengyel P. Biochemistry of interferons and their actions. Ann Rev Biochem 1982;51:251–282.

    Article  PubMed  CAS  Google Scholar 

  45. Bennett MR, Schwartz SM. Antisense therapy for angioplasty restenosis: Some critical considerations. Circulation 1995;92:1981–1993.

    Article  PubMed  CAS  Google Scholar 

  46. Hansson GK, Jonasson L, Holm J, Clowes MM, Clowes AW. γ-interferon regulates vascular smooth muscle cell proliferation and la expression in vivo and in vitro. Circ Res 1988;63:712–719.

    Article  PubMed  CAS  Google Scholar 

  47. Hansson GK, Hellstrand M, Rymo L, Rubbia L, Gabbiani G. Interferon-γ inhibits both proliferation and expression of differentiation-specific α-smooth muscle cell actin in arterial smooth muscle cells. J Exp Med 1989;170:1595–1608.

    Article  PubMed  CAS  Google Scholar 

  48. Hansson GK, Holm J. IFN-γ inhibits arterial stenosis after injury. Circulation 1991;84:1266–1272.

    Article  PubMed  CAS  Google Scholar 

  49. Wang W, Chen HJ, Giedd KN, Schwartz A, Cannon PJ, Rabbani LE. T-cell lymphokines, interleukin-4 and gamma interferon, modulate the induction of vascular smooth muscle cell tissue plasminogen activator and migration by serum and platelet-derived growth factor. Circ Res 1995;77:1095–1106.

    Article  PubMed  CAS  Google Scholar 

  50. Wang W, Chen HJ, Schwartz A, Cannon PJ, Rabbani LE. T cell lymphokines modulate bFGF-induced smooth muscle cell fibrinolysis and migration. Am J Physiol 1997;272(Cell Physiol 41):C392–C398.

    PubMed  CAS  Google Scholar 

  51. Niedbala MJ, Stein PM. Tumor necrosis factor induction of endothelial cell urokinase-type plasminogen activator mediated proteolysis of extracellular matrix and its antagonism by γ-interferon. Blood 1992;79:678–687.

    PubMed  CAS  Google Scholar 

  52. Stein CA. Does antisense exist? Nature Medicine 1995;1:1119–1121.

    Article  PubMed  CAS  Google Scholar 

  53. Krieg AM, Yi A-K, Matson S, Waldschmidt TJ, Bishop GA, Teasdale R, Koretzky GA, Klinman DM. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 1995;374:546–549.

    Article  PubMed  CAS  Google Scholar 

  54. Tamamoto T, Yamamoto S, Kataoka T, Tokunaga T. Ability of oligonucleotides with certain palindromes to induce interferon production and augment natural killer cell activity is associated with their base length. Antisense Res Devel 1994;4:119–122.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rabbani, L.E., Simon, A.D., Wang, W. (1999). Non-G-Quartet, Non-Sequence Specific Antirestenotic Effects Of Phosphorothioate Oligodeoxynucleotides. In: Rabbani, L.E. (eds) Applications of Antisense Therapies to Restenosis. Perspectives in Antisense Science, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5183-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5183-6_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7361-2

  • Online ISBN: 978-1-4615-5183-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics