Skip to main content

Vascular Antisense Therapy Directed Against c-myc, c-myb and PCNA

  • Chapter
  • 43 Accesses

Part of the book series: Perspectives in Antisense Science ((DARE,volume 3))

Abstract

Normally quiescent and contractile in phenotype (Reviewed in [1]), vascular smooth muscle cells {VSMC} contribute to the structural integrity of the vascular tree and are critical effector organs in the regulation of blood pressure and tissue perfusion. It is this phenotype that allows endothelial-derived, circulating, and autonomic signals to co-ordinate vasomotor tone through direct effects on VSMC contractility. However, in response to a variety of injurious stimuli, normally quiescent and contractile VSMC can be transformed into migratory and proliferating VSMC that expand and remodel their surrounding matrix [1–4]. Indeed, atherosclerosis, hypertension and other models of arterial injury are typified by proliferating and synthetic VSMC causing neointimal formation, medial hypertrophy, and ultimately lumen encroachment [5–8].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dilley, R.J., J.K. McGeachie, and F.J. Prendergast, A review of the proliferative behaviour, morphology and phenotypes of vascular smooth muscle.Atherosclerosis, 1987. 63(2–3): p. 99–107.

    PubMed  CAS  Google Scholar 

  2. Schwartz, S.M. and M.A. Reidy, Common mechanisms of proliferation of smooth muscle in atherosclerosis and hypertension. Human Pathology, 1987. 18(3): p. 240–247.

    PubMed  CAS  Google Scholar 

  3. Tanaka, H., et al., Sustained activation of vascular cells and leukocytes in the rabbit aorta after balloon injury. Circulation, 1993. 88 (4 Pt 1): p. 1788–1803.

    PubMed  CAS  Google Scholar 

  4. Galis, Z.S., et al., Cytokine-stimulated human vascular smooth muscle cells synthesize a complement of enzymes required for extracellular matrix digestion. Circulation Research, 1994. 75(1): p. 181–189.

    PubMed  CAS  Google Scholar 

  5. Schwartz, S.M., G.R. Campbell, and J.H. Campbell, Replication of smooth muscle cells in vascular disease. Circ. Res., 1986. 58(4): p. 427–444.

    PubMed  CAS  Google Scholar 

  6. Ross, R., The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature, 1993. 362(6423): p. 801–809.

    PubMed  CAS  Google Scholar 

  7. Ross, R., Rous-Whipple Award Lecture. Atherosclerosis: a defense mechanism gone awry. Am. J. Path., 1993. 143(4): p. 987–1002.

    PubMed  CAS  Google Scholar 

  8. Ross, R., Cell biology of atherosclerosis. Annual Review of Physiology, 1995. 57: p. 791–804.

    PubMed  CAS  Google Scholar 

  9. Libby, P., S.J. Warner, and G.B. Friedman, Interleukin 1: a mitogen for human vascular smooth muscle cells that induces the release of growth-inhibitory prostanoids. J. Clin. Invest, 1988. 81(2): p. 487–498.

    PubMed  CAS  Google Scholar 

  10. Banskota, N.K., et al., Insulin, insulin-like growth factor I and platelet-derived growth factor interact additively in the induction of the protooncogene c-myc and cellular proliferation in cultured bovine aortic smooth muscle cells. Molecular Endocrinology, 1989. 3(8): p. 1183–1190.

    PubMed  CAS  Google Scholar 

  11. Itoh, H., et al., Multiple autocrine growth factors modulate vascular smooth muscle cell growth response to angiotensin II. Journal of Clinical Investigation, 1993. 91(5): p. 2268–2274.

    PubMed  CAS  Google Scholar 

  12. Davies, M.G. and P.O. Hagen, Pathobiology of intimai hyperplasia. British Journal of Surgery, 1994. 81(9): p. 1254–1269.

    PubMed  CAS  Google Scholar 

  13. Owens, G.K., Control of hypertrophic versus hyperplastic growth of vascular smooth muscle cells. American Journal of Physiology, 1989. 257(6 Pt 2): p. H1755–H1765.

    PubMed  CAS  Google Scholar 

  14. Raines, E.W. and R. Ross, Multiple growth factors are associated with lesions of atherosclerosis: specificity or redundancy? Bioessays, 1996. 18(4): p. 271–282.

    PubMed  CAS  Google Scholar 

  15. McCaffrey, P., et al., Two independent growth factor-generated signals regulate c-fos and c-myc mRNA levels in Swiss 3T3 cells. Journal of Biological Chemistry, 1987. 262(4): p. 1442–1445.

    PubMed  CAS  Google Scholar 

  16. Berridge, M.J., Inositol trisphosphate and calcium signalling. Nature, 1993. 361(6410): p. 315–325.

    PubMed  CAS  Google Scholar 

  17. Davies, M.G., et al., The expression and function of G-proteins in experimental intimal hyperplasia. J. Clin. Invest., 1994. 94(4): p. 1680–1689.

    PubMed  CAS  Google Scholar 

  18. Berridge, M.J., Calcium signalling and cell proliferation. Bioessays, 1995. 17(6): p. 491–500.

    PubMed  CAS  Google Scholar 

  19. Davies, M.G., et al., The temporal sequence of G-protein expression in intimai hyperplasia. Journal of Surgical Research, 1996. 63(1): p. 115–122.

    PubMed  CAS  Google Scholar 

  20. Grana, X. and E.P. Reddy, Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs).Oncogene, 1995. 11(2):p.211-219.

    Google Scholar 

  21. Kindy, M.S. and G.E. Sonenshein, Regulation of oncogene expression in cultured aortic smooth muscle cells. Post-transcriptional control of c-myc mRNA. Journal of Biological Chemistry, 1986. 261(27): p. 12865–12868.

    PubMed  CAS  Google Scholar 

  22. Gadeau, A.P., M. Campan, and C. Desgranges, Induction of cell cycle-dependent genes during cell cycle progression of arterial smooth muscle cells in culture. Journal of Cellular Physiology, 1991. 146(3): p. 356–361.

    PubMed  CAS  Google Scholar 

  23. Campan, M., et al., Cell cycle dependent gene expression in quiescent stimulated and asynchronously cycling arterial smooth muscle cells in culture. Journal of Cellular Physiology, 1992. 150(3): p. 493–500.

    PubMed  CAS  Google Scholar 

  24. Miano, J.M., et al., Smooth muscle cell immediate-early gene and growth factor activation follows vascular injury. A putative in vivo mechanism for autocrine growth. Arteriosclerosis & Thrombosis, 1993. 13(2): p. 211–219.

    CAS  Google Scholar 

  25. Shi, Y., et al., Downregulation of c-myc expression by antisense oligonucleotides inhibits proliferation of human smooth muscle cells [see comments]. Circulation, 1993. 88(3): p. 1190–1195.

    PubMed  CAS  Google Scholar 

  26. Bennett, M.R., et al., Inhibition of vascular smooth muscle cell proliferation in vitro and in vivo by c-myc antisense oligodeoxynucleotides. Journal of Clinical Investigation, 1994. 93(2): p. 820–828.

    PubMed  CAS  Google Scholar 

  27. Edelman, E.R., et al., c-myc in vasculoproliferative disease. Circulation Research, 1995. 76(2): p. 176–182.

    PubMed  CAS  Google Scholar 

  28. Kaczmarek, L., et al., Microinjected c-myc as a competence factor. Science, 1985. 228(4705): p. 1313–1315.

    PubMed  CAS  Google Scholar 

  29. Thompson, C., et al., Expression of the c-myb protooncogene during cellular proliferation. Nature, 1986. 319: p. 374–380.

    PubMed  CAS  Google Scholar 

  30. Reilly, C.F., et al., Heparin prevents vascular smooth muscle cell progression through the G1 phase of the cell cycle. Journal of Biological Chemistry, 1989. 264(12): p. 6990–6995.

    PubMed  CAS  Google Scholar 

  31. Brown, K.E., M.S. Kindy, and G.E. Sonenshein, Expression of the c-myb proto-oncogene in bovine vascular smooth muscle cells. J.Biol.Chem., 1992. 267: p. 4625–4630.

    PubMed  CAS  Google Scholar 

  32. Bravo, R. and H. Macdonald-Bravo, Induction of the nuclear protein ‘cyclin’ in quiescent mouse 3T3 cells stimulated by serum and growth factors. Correlation with DNA synthesis. EMBO Journal., 1984. 3(13): p. 3177–3181.

    PubMed  CAS  Google Scholar 

  33. Bravo, R. and H. Macdonald-Bravo, Changes in the nuclear distribution of cyclin (PCNA) but not its synthesis depend on DNA replication. EMBO Journal., 1985. 4(3): p. 655–661.

    PubMed  CAS  Google Scholar 

  34. Luscher, B. and R.N. Eisenman, New light on Myc and Myb. Part I. Myc. Genes & Development, 1990. 4(12A): p. 2025–2035.

    CAS  Google Scholar 

  35. Kerkhoff, E. and K. Bister, Myc protein structure: localization of DNA-binding and protein dimerization domains. Oncogene, 1991. 6(1):p.93–102.

    PubMed  CAS  Google Scholar 

  36. Prendergast, G.C. and E.B. Ziff, DNA-binding motif [letter]. Nature, 1989. 341(6241): p. 392.

    PubMed  CAS  Google Scholar 

  37. Dean, M., et al., Regulation of c-myc transcription and mRNA abundance by serum growth factors and cell contact. Journal of Biological Chemistry, 1986. 261(20): p. 9161–9166.

    PubMed  CAS  Google Scholar 

  38. Banskota, N.K., et al., Characterization of induction of protooncogene c-myc and cellular growth in human vascular smooth muscle cells by insulin and IGF-I. Diabetes, 1989. 38(1): p. 123–129.

    PubMed  CAS  Google Scholar 

  39. Hann, S.R., C.B. Thompson, and R.N. Eisenman, c-myc oncogene protein synthesis is independent of the cell cycle in human andavian cells. Nature, 1985. 314(6009): p. 366–369.

    PubMed  CAS  Google Scholar 

  40. Rabbitts, P.H., et al., Metabolism of c-myc gene products: c-myc mRNA and protein expression in the cell cycle. EMBO Journal., 1985. 4(8): p. 2009–2015.

    PubMed  CAS  Google Scholar 

  41. Baumbach, W.R., E.J. Keath, and M.D. Cole, A mouse c-myc retrovirus transforms established fibroblast lines in vitro and induces monocyte-macrophage tumors in vivo. Journal of Virology, 1986. 59(2): p. 276–283.

    PubMed  CAS  Google Scholar 

  42. Calabretta, B., Inhibition of protooncogene expression by antisense oligodeoxynucleotides: biological and therapeutic implications. Cancer Research, 1991. 51(17): p. 4505–4510.

    PubMed  CAS  Google Scholar 

  43. Collins, J.F., et al., c-myc antisense oligonucleotides inhibit the colony-forming capacity of Colo 320 colonic carcinoma cells. Journal of Clinical Investigation, 1992. 89(5): p. 1523–1527.

    PubMed  CAS  Google Scholar 

  44. Paria, B.C., S.K. Dey, and G.K. Andrews, Antisense c-myc effects on preimplantation mouse embryo development. Proc. National Academy of Sciences of the United States of America, 1992. 89(21): p. 10051–10055.

    CAS  Google Scholar 

  45. Robinson, L.A., et al., c-myc antisense oligodeoxyribonucleotides inhibit proliferation of non-small cell lung cancer. Annals of Thoracic Surgery, 1995. 60(6): p. 1583–1891.

    PubMed  CAS  Google Scholar 

  46. Watson, P.H., R.T. Pon, and R.P. Shiu, Inhibition of c-myc expression by phosphorothioate antisense oligonucleotide identifies a critical role for c-myc in the growth of human breast cancer. Cancer Research, 1991. 51(15): p. 3996–4000.

    PubMed  CAS  Google Scholar 

  47. Burgess, T., et al., The antiproliferative activity of c-myb and c-myc antisense oligonucleotides in smooth muscle cells is caused by a nonantisense mechanism. Proc Natl Acad Sci USA, 1995. 92: p. 4051–4055.

    PubMed  CAS  Google Scholar 

  48. Guvakova, M., et al., Phosphothioate oligodeoxynucleotides bind to basic fibroblast growth factor, inhibit its binding to cell surface receptors, and remove it from low affinity binding sites on extracellular matrix. J Biol Chem, 1995. 270: p. 2620–2627.

    PubMed  CAS  Google Scholar 

  49. Biro, S., et al., Inhibitory effects of antisense oligodeoxynucleotides targeting c-myc mRNA on smooth muscle cell proliferation and migration. Proceedings of the National Academy of Sciences of the United States of America, 1993. 90(2): p. 654–658.

    PubMed  CAS  Google Scholar 

  50. Simons, M., et al., Antisense c-myb oligonucleotides inhibit intimai arterial smooth muscle cell accumulation in vivo. Nature, 1992. 359(6390):p.67-70.

    Google Scholar 

  51. Shi, Y., et al., Transcatheter delivery of c-myc antisense oligomers reduces neointimal formation in a porcine model of coronary artery balloon injury. Circulation, 1994. 90(2): p. 944–951.

    PubMed  CAS  Google Scholar 

  52. Libby, P., et al., Production of platelet-derived growth factor-like mitogen by smooth-muscle cells from human atheroma. New England Journal of Medicine, 1988. 318(23): p. 1493–1498.

    PubMed  CAS  Google Scholar 

  53. Miano, J.M., et al., Localization of Fos and Jun proteins in rat aortic smooth muscle cells after vascular injury. American Journal of Pathology, 1993. 142(3): p. 715–724.

    PubMed  CAS  Google Scholar 

  54. Kutryk, M., et al., Feasibility of the local delivery of antisense oligonucleotide against c-myc for the prevention of in-stent restenosis. European Heart Journal., 1997. 18(Supplement): p. 507.

    Google Scholar 

  55. Weston, K.M., The myb genes. Semin.Cancer Biol., 1990. 1: p. 371–382.

    PubMed  CAS  Google Scholar 

  56. Luscher, B. and R.N. Eisenman, New light on Myc and Myb. Part II. Myb. Genes & Development, 1990. 4(12B): p. 2235–2241.

    CAS  Google Scholar 

  57. Calabretta, B. and N.C. Nicolaides, c-myb and growth control. Crit.Rev.Eukaryot.Gene Expr., 1992. 2: p. 225–235.

    PubMed  CAS  Google Scholar 

  58. Ogata, K., et al., Solution structure of a DNA-binding unit of Myb: a helix-turn-helix-related motif with conserved tryptophans forming a hydrophobic core. Proc.Natl.Acad.Sci.U.S.A., 1992. 89: p. 6428–6432.

    PubMed  CAS  Google Scholar 

  59. Ogata, K., et al., Solution structure of a specific DNA complex of the Myb DNA-binding domain with cooperative recognition helices. Cell, 1994. 79: p. 639–648.

    PubMed  CAS  Google Scholar 

  60. Kanei-Ishii, C., et al., Transactivation and transformation by Myb are negatively regulated by a leucine-zipper structure. Proc. Natl. Acad. Sci. U.S.A., 1992. 89: p. 3088–3092.

    PubMed  CAS  Google Scholar 

  61. Nomura, T., et al., Negative autoregulation of c-Myb activity by homodimer formation through the leucine zipper. J.Biol.Chem., 1993. 268: p. 21914–21923.

    PubMed  CAS  Google Scholar 

  62. Biedenkapp, H., et al., Viral myb oncogene encodes a sequence-specific DNA binding activity. Nature, 1988. 335: p. 835–837.

    PubMed  CAS  Google Scholar 

  63. Nakagoshi, H., et al., Binding of the c-myb proto-oncogene product to the simian virus 40 enhancer stimulates transcription. Journal of Biological Chemistry, 1990. 265(6): p. 3479–3483.

    PubMed  CAS  Google Scholar 

  64. Husain, M., et al., c-Myb-dependent cell cycle progression and Ca 2+ storage in cultured vascular smooth muscle cells. Circulation Research, 1997. 80(5): p. 617–626.

    PubMed  CAS  Google Scholar 

  65. Bein, K., et al., c-Myb function in 3T3 fibroblasts. J. Cell Physiol. 1997 (in press).

    Google Scholar 

  66. Badiani, P., et al., Dominant interfering alleles define a role for c-Myb in T-cell development. Genes Dev., 1994. 8: p. 770–782.

    PubMed  CAS  Google Scholar 

  67. Gerwitz, A.M. and B. Calabretta, A c-myb antisense oligodeoxynucleotide inhibits normal human heamtopoiesis in vitro. Science, 1988. 242: p. 1303–1306.

    Google Scholar 

  68. Mucenski, M.L., et al., A functional c-myb gene is required for normal murine fetal hepatic hematopoiesis. Cell, 1991. 65: p. 677–689.

    PubMed  CAS  Google Scholar 

  69. Valtieri, M., et al., Antisense myb inhibition of purified erythroid progenitors in development and differentiation is linked to cycling activity and expression of DNA polymerase alpha. Blood, 1991. 77(6): p. 1181–1190.

    PubMed  CAS  Google Scholar 

  70. Baserga, R., et al., Inhibition of cell cycle progression by antisense oligodeoxynucleotides. Annals of the New York Academy of Sciences, 1992. 660: p. 64–69.

    PubMed  CAS  Google Scholar 

  71. Anfossi, G., A.M. Gewirtz, and B. Calabretta, An oligomer complementary to c-myb-encoded mRNA inhibits proliferation of human myeloid leukemia cell lines. Proceedings of the National Academy of Sciences of the United States of America, 1989. 86(9): p. 3379–3383.

    PubMed  CAS  Google Scholar 

  72. Simons, M. and R.D. Rosenberg, Antisense nonmuscle myosin heavy chain and c-myb oligonucleotides suppress smooth muscle cell proliferation in vitro. Circulation Research, 1992. 70(4): p. 835–843.

    PubMed  CAS  Google Scholar 

  73. Simons, M.,et al., The proto-oncogene c-myb mediates an intracellular calcium rise during the late G1 phase of the cell cycle [published erratum appears in J Biol Chem 1993 Jul 25;268(21):16082].J.Biol.Chem., 1993. 268: p. 627–632.

    PubMed  CAS  Google Scholar 

  74. Gunn, J., et al., The effect of oligonucleotides to c-myb on vascular smooth muscle cell proliferation and neointima formation after porcine coronary angioplasty. Circulation Research, 1997. 80(4): p. 520–531.

    PubMed  CAS  Google Scholar 

  75. Cogswell, J.P., et al., Mechanism of c-myc regulation by c-Myb in different cell lineages. Mol.Cell Biol., 1993. 13: p. 2858–2869.

    PubMed  CAS  Google Scholar 

  76. Travali, S., et al., Effect of the myb gene product on expression of the PCNA gene in fibroblasts. Oncogene, 1991. 6: p. 887–894.

    PubMed  CAS  Google Scholar 

  77. Ku, D.H., et al., c-myb transactivates cdc2 expression via Myb binding sites in the 5′ flanking region of the human cdc2 gene [published erratum appears in J Biol Chem 1993 Jun 15;268(17):13010]. J.Biol.Chem., 1993. 268: p. 2255–2259.

    PubMed  CAS  Google Scholar 

  78. Venturelli, D., S. Travali, and B. Calabretta, Inhibition of T-cell proliferation by a MYB antisense oligomer is accompanied by selective down-regulation of DNA polymerase alpha expression. Proceedings of the National Academy of Sciences of the United States of America, 1990. 87(15): p. 5963–5967.

    PubMed  CAS  Google Scholar 

  79. Poenie, M., et al., Changes of free calcium levels with stages of the cell division cycle. Nature, 1985. 315(6015): p. 147–149.

    PubMed  CAS  Google Scholar 

  80. Silver, R.B., Calcium and cellular clocks orchestrate cell division. Ann N Y Acad Sci, 1990. 582: p. 207–221.

    PubMed  CAS  Google Scholar 

  81. Short, A.D., et al., Intracellular Ca2+ pool content is linked to control of cell growth. Proc Natl Acad Sci U S A, 1993. 90(11): p. 4986–4990.

    PubMed  CAS  Google Scholar 

  82. Means, A.R., Calcium, calmodulin and cell cycle regulation. FEBS Letters, 1994. 347: p. 1–4.

    PubMed  CAS  Google Scholar 

  83. Bianchi, S., et al., Calcium modulates the cyclin D1 expression in a rat parathyroid cell line. Biochemical Biophysical Research Communications, 1994. 204(2): p. 691–700.

    CAS  Google Scholar 

  84. Berridge, M.J., The AM and FM of calcium signalling [news; comment]. Nature, 1997. 386(6627): p. 759–760.

    PubMed  CAS  Google Scholar 

  85. Simons, M., et al., c-Myb affects intracellular calcium handling in vascular smooth muscle cells. Am J Physiol: Cell Physiol, 1995. 37: p. C856–C868.

    Google Scholar 

  86. Husain, M., et al., Regulation of vascular smooth muscle cell proliferation by plasma membrane Ca2+-ATPase. Am. J. Physiol. (Cell Physiol), 1997. 272: p. C1947–C1959.

    CAS  Google Scholar 

  87. Ratajczak, M.Z., et al., In vivo treatment of human leukemia in a scid mouse model with c-myb antisense oligodeoxynucleotides. Proceedings of the National Academy of Sciences of the United States of America, 1992. 89(24): p. 11823–11827.

    PubMed  CAS  Google Scholar 

  88. Villa, A.E., et al., Effects of antisense c-myb oligonucleotides on vascular smooth muscle cell proliferation and response to vessel wall injury. Circulation Research, 1995. 76(4): p. 505–513.

    PubMed  CAS  Google Scholar 

  89. Schaefer, A., U. Stocker, and H. Marquardt, Calcium ionophore-induced transient down-regulation of c-myb mRNA levels in Friend eryihroleukemia cells. J.Biol.Chem., 1993. 268: p. 10876–10880.

    PubMed  CAS  Google Scholar 

  90. Schaefer, A., et al., Early transient suppression of c-myb mRNA levels and induction of differentiation in Friend erythroleukemia cells by the [Ca2+]i-increasing agents cyclopiazonic acid and thapsigargin. J.Biol.Chem., 1994. 269: p. 8786–8791.

    PubMed  CAS  Google Scholar 

  91. Schaefer, A., et al., Ca2+/calmodulin-dependent and-independent down-regulation ofc-myb mRNA levels in erythropoietin-responsive murine erythroleukemia cells. The role of calcineurin.Journal of Biological Chemistry, 1996. 271(23): p. 13484–13490.

    PubMed  CAS  Google Scholar 

  92. Azrin, M., et al., Inhibition of smooth muscle cell proliferation in vivo following local delivery of antisense oligonucleotides to c-myb during angioplasty. J. Am. Coll. Cardiol., 1994. Supplement: p. 396A.

    Google Scholar 

  93. Zeymer, U., et al., Proliferating cell nuclear antigen immunochemistry: a new, more sensitive method for detection of proliferating vascular smooth muscle cells. J. Am. Coll. Cardiol., 1992. 19(3): p. 165A.

    Google Scholar 

  94. Bravo, R., et al., Cyclin/PCNA is the auxiliary protein of DNA polymerase-delta. Nature, 1987. 326(6112): p. 515–517.

    PubMed  CAS  Google Scholar 

  95. Almendral., J.M., et al., Cloning and sequence of the human nuclear protein cyclin: homology with DNA-binding proteins. Proceedings of the National Academy of Sciences of the United States of America, 1987. 84(6): p. 1575–1579.

    PubMed  CAS  Google Scholar 

  96. Bravo, R. and J.E. Celis, A search for differential polypeptide synthesis throughout the cell cycle of HeLa cells. J. Cell Biol. 1980. 84(3):p.795–802.

    PubMed  CAS  Google Scholar 

  97. Bravo, R. and H. Macdonald-Bravo, Existence of two populations of cyclin/proliferating cell nuclear antigen during the cell cycle: association with DNA replication sites. J. Cell Biol. 1987. 105(4): p. 1549–1554.

    PubMed  CAS  Google Scholar 

  98. Prelich, G., et al., Functional identity of proliferating cell nuclear antigen and a DNA polymerase-delta auxiliary protein. Nature, 1987. 326(6112): p. 517–520.

    PubMed  CAS  Google Scholar 

  99. Prelich, G., et al., The cell-cycle regulated proliferating cell nuclear antigen is required for SV40 DNA replication in vitro. Nature, 1987. 326(6112): p. 471–475.

    PubMed  CAS  Google Scholar 

  100. Prelich, G. and B. Stillman, Coordinated leading and lagging strand synthesis during SV40 DNA replication in vitro requires PCNA. Cell, 1988. 53(1): p. 117–126.

    PubMed  CAS  Google Scholar 

  101. Jaskulski, D., et al., Inhibition of cellular proliferation by antisense oligodeoxynucleotides to PCNA cyclin. Science, 1988. 240(4858):p.1544–1546.

    PubMed  CAS  Google Scholar 

  102. Celis, J.E. and A. Celis, Cell cycle-dependent variations in the distribution of the nuclear protein cyclin proliferating cell nuclear antigen in cultured cells: subdivision of S phase. Proceedings of the National Academy of Sciences of the United States of America, 1985. 82(10): p. 3262–3266.

    PubMed  CAS  Google Scholar 

  103. Madsen, P. and J.E. Celis, S-phase patterns of cyclin (PCNA) antigen staining resemble topographical patterns of DNA synthesis. A role for cyclin in DNA replication? FEBS Letters, 1985. 193(1): p. 5–11.

    PubMed  CAS  Google Scholar 

  104. Speir, E. and S.E. Epstein, Inhibition of smooth muscle cell proliferation by an antisense oligodeoxynucleotide targeting the messenger RNA encoding proliferating cell nuclear antigen. Circulation, 1992. 86(2): p. 538–547.

    PubMed  CAS  Google Scholar 

  105. Simons, M., E.R. Edelman, and R.D. Rosenberg, Antisense proliferating cell nuclear antigen oligonucleotides inhibit intimai hyperplasia in a rat carotid artery injury model. J. Clin. Invest., 1994. 93(6): p. 2351–2356.

    PubMed  CAS  Google Scholar 

  106. Morishita, R., et al., Single intraluminal delivery of antisense cdc2 kinase and proliferating-cell nuclear antigen oligonucleotides results in chronic inhibition of neointimal hyperplasia. Proceedings of the National Academy of Sciences of the United States of America, 1993. 90(18): p. 8474–8478.

    PubMed  CAS  Google Scholar 

  107. Pickering, J.G., et al., Proliferative activity in peripheral and coronary atherosclerotic plaque among patients undergoing percutaneous revascularization. J. Clin. Invest. 1993. 91(4): p. 1469–1480.

    PubMed  CAS  Google Scholar 

  108. Pickering, J., et al., Inhibition of proliferation of human vascular smooth muscle cells using antisense oligonucleotides to PCNA. Journal of the American College of Cardiology, 1992. 19(3): p. 165A.

    Google Scholar 

  109. Pickering, J.G., et al., Processing of chimeric antisense oligonucleotides by human vascular smooth muscle cells and human atherosclerotic plaque. Implications for antisense therapy of restenosis after angioplasty. Circulation, 1996. 93(4): p. 772–780.

    PubMed  CAS  Google Scholar 

  110. Mann, M.J., et al., Genetic engineering of vein grafts resistant to atherosclerosis. Proceedings of the National Academy of Sciences of the United States of America, 1995. 92(10): p. 4502–4506.

    PubMed  CAS  Google Scholar 

  111. Mann, M.J., et al., Cell cycle inhibition preserves endothelial function in genetically engineered rabbit vein grafts. Journal of Clinical Investigation, 1997. 99(6): p. 1295–1301.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Husain, M., Simons, M. (1999). Vascular Antisense Therapy Directed Against c-myc, c-myb and PCNA. In: Rabbani, L.E. (eds) Applications of Antisense Therapies to Restenosis. Perspectives in Antisense Science, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5183-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5183-6_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7361-2

  • Online ISBN: 978-1-4615-5183-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics