Advertisement

Endothelin: An Important Mediator in the Pathophysiology of Syndrome X?

  • Ian D. Cox
  • Juan Carlos Kaski
Chapter
  • 87 Downloads
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 213)

Abstract

Angina pectoris with normal coronary arteries is a common clinical entity with up to 30% of patients undergoing invasive assessment for anginal chest pain having normal coronary angiograms [1,2]. The term cardiac syndrome X to describe patients with chest pain and normal coronaries was first introduced by Kemp in 1973 [3] and is now generally confined to patients with exertional angina, completely normal coronary angiograms and a positive electrocardiographic response (> 0.1 mV of ST segment depression) to exercise testing [4]. The pathophysiology of chest pain in this patient group appears to be heterogeneous and remains the subject of considerable debate [5, 6, 7]. A non-cardiac source of pain, often originating in the gastrointestinal or musculoskeletal system, may be identified by further investigation. However, around 20% of patients appear to have objective evidence of myocardial ischemia in most series, and a mechanism involving a primary cardiac abnormality remains the most likely explanation for the symptoms in this subgroup.

Keywords

Coronary Flow Reserve Left Bundle Branch Block Atrial Pace Normal Coronary Artery Normal Coronary Angiogram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Proudfit WL, Shirey EK, Sones FJ. Selective cine coronary arteriography. Correlation with clinical findings in 1,000 patients. Circulation 1966;33:901–10.PubMedCrossRefGoogle Scholar
  2. 2.
    Kemp H, Kronmal R, Vliestra R, Frye R, and the Coronary Artery Surgery Study (CASS) participants: Seven year survival of patients with normal or near normal coronary arteriograms: a CASS registry study. J Am Coll Cardiol 1986;7:479–483.PubMedCrossRefGoogle Scholar
  3. 3.
    Kemp H. Left ventricular function in patients with the anginal syndrome and normal coronary arteriograms. Am J Cardiol 1973;32:375–376.PubMedCrossRefGoogle Scholar
  4. 4.
    Kaski JC. Syndrome X: a heterogeneous syndrome. Historical background, clinical presentation, electrocardiographic features, and rational management. An overview. In: Angina pectoris with normal coronary arteries: Syndrome X. Ed. Kaski JC (Kluwer Academic Publishers, Massachusetts 1994) pp.-19.CrossRefGoogle Scholar
  5. 5.
    Cannon RO, Camici PG, Epstein SE. Pathophysiological dilemma of syndrome X. Circulation 1992;85:883–892.PubMedCrossRefGoogle Scholar
  6. 6.
    Maseri A, Crea F, Kaski JC, Crake T. Mechanisms of angina pectoris in syndrome X. J Am Coll Cardiol 1991;17:499–506.PubMedCrossRefGoogle Scholar
  7. 7.
    Kaski JC, Elliott PM. Angina pectoris and normal coronary arteriograms: clinical presentation and hemodynamic characteristics. Am J Cardiol 1995;76: 35D–42D.PubMedCrossRefGoogle Scholar
  8. 8.
    Kaul S, Newell J, Chester D, Pohost G, Okada R, Boucher C. Quantitative thallium imaging findings in patients with normal coronary angiographie findings and clinically normal subjects. Am J Cardiol 1986;57:509–512.PubMedCrossRefGoogle Scholar
  9. 9.
    Berger B, Arbaramowitz R, Park E, et al. Abnormal thallium-201 scans in patients with chest pain and angiographically normal coronary arteries. Am J Cardiol 1983;52:365–370.PubMedCrossRefGoogle Scholar
  10. 10.
    Melier J, Goldsmith S, Rudin A, et al. Spectrum of exercise thallium-201 myocardial perfusion imaging in patients with chest pain and normal coronary angiograms. Am J Cardiol 1979;43:717–723.CrossRefGoogle Scholar
  11. 11.
    Cannon RO, Bonow R, Bacharach S, et al. Left ventricular dysfunction in patients with angina pectoris, normal epicardial coronaries and abnormal vasodilator reserve. Circulation 1985;71:218–226.PubMedCrossRefGoogle Scholar
  12. 12.
    Arbogast R, Bourassa MG. Myocardial function during atrial pacing in patients with angina pectoris and normal coronary arteriograms. Comparison with patients having significant coronary artery disease. Am J Cardiol 1973;32:257–63.PubMedCrossRefGoogle Scholar
  13. 13.
    Nihoyannopoulos P, Kaski JC, Crake T, Maseri A. Absence of myocardial dysfunction during stress in patients with syndrome X. J Am Coll Cardiol 1991;18:1463–1470.PubMedCrossRefGoogle Scholar
  14. 14.
    Panza J, Laurienzo J, Curiel R, et al. Investigation of the mechanism of chest pain in patients with angiographically normal coronary arteries using transesophageal dobutamine stress echocardiography. J Am Coll Cardiol 1997;29:293–301.PubMedCrossRefGoogle Scholar
  15. 15.
    Opherk D, Zebe H, Weibe E, et al. Reduced coronary dilator capacity and ultrastructural changes of the myocardium in patients with angina pectoris but normal coronary angiograms. Circulation 1981;63:81725.CrossRefGoogle Scholar
  16. 16.
    Hutchison S, Poole-Wilson P, Henderson A. Angina with normal coronary arteries. QJ Med 1989;72:677–688.Google Scholar
  17. 17.
    Camici P, Marraccinni P, Lorenzoni R, et al. Coronary hemodynamics and myocardial metabolism in patients with syndrome X: response to pacing stress. J Am Coll Cardiol 1991;17:1461–1470.PubMedCrossRefGoogle Scholar
  18. 18.
    Boudoulas H, Cobb T, Leighton R, Wilt S. Myocardial lactate production in patients with angina like chest pain and angiographically normal coronary arteries and left ventricle. Am J Cardiol 1974;84:501–505.CrossRefGoogle Scholar
  19. 19.
    Zeiher AM, Krause T, Schachinger V, Minners J, Moser E. Impaired endothelium dependent vasodilation of the coronary resistance vessels is associated with exercise-induced myocardial ischemia. Circulation 1995;91:2345–52.PubMedCrossRefGoogle Scholar
  20. 20.
    Cannon RO, Watson R, Rosing D, Epstein S. Angina caused by reduced vasodilator reserve of the small coronary arteries. J Am Coll Cardiol 1983;1:1359–73.PubMedCrossRefGoogle Scholar
  21. 21.
    Greenberg M, Grose R, Neuberger N, Silverman R, Strain JE, Cohen MV. Impaired coronary vasodilator reserve as a cause of lactate production during pacing induced ischemia in patients with angina pectoris and normal coronaries. J Am Coll Cardiol 1987;9:743–751.PubMedCrossRefGoogle Scholar
  22. 22.
    Rosano G, Kaski J, Arie S, et al. Failure to demonstrate myocardial ischemia in patients with angina and normal coronary arteries. Evaluation by continuous coronary sinus pH monitoring and lactate metabolism. Eur Heart J 1996;17:1175–1180.PubMedCrossRefGoogle Scholar
  23. 23.
    Cannon R, Epstein S. “Microvascular angina” as a cause of chest pain with angiographically normal coronary arteries. Am J Cardiol 1988;61:1338–1343.PubMedCrossRefGoogle Scholar
  24. 24.
    Legrand V, Hodgson JM, Bates ER, et al. Abnormal coronary flow reserve and abnormal radionuclide exercise test results in patients with normal coronary angiograms. J Am Coll Cardiol 1985;6:1245–53.PubMedCrossRefGoogle Scholar
  25. 25.
    Bortone A, Hess O, Eberli FR, et al. Abnormal coronary vasomotion during exercise in patients with normal coronary arteries and reduced coronary flow reserve. Circulation 1989;79:516–527.PubMedCrossRefGoogle Scholar
  26. 26.
    Camici P, Gistri R, Lorenzoni R, et al. Coronary reserve and exercise ECG in patients with chest pain and normal coronary angiograms. Circulation 1992;86:179–186.PubMedCrossRefGoogle Scholar
  27. 27.
    Luscher TF, Vanhoutte PM. The endothelium: modulator of cardiovascular function. Boca Raton: CRC Press 1990.Google Scholar
  28. 28.
    Vanhoutte P. Other endothelium derived vasoactive factors. Circulation 1993;87 (Suppl V):V9–17.Google Scholar
  29. 29.
    Moncada S, Herman A, Vanhoutte P. Endothelium derived relaxing factor is identified as nitric oxide. Trends Pharmacol Sci 1986;8:365–368.CrossRefGoogle Scholar
  30. 30.
    Palmer R, Ashton D, Moncada S. Vascular endothelial cells synthesize nitric oxide form L-arginine. Nature 1988;333:664–666.PubMedCrossRefGoogle Scholar
  31. 31.
    Valiance P, Collier J, Moncada S. Nitric oxide synthesized from L-arginine mediates endothelium dependent dilation in human veins in vivo. Cardiovasc Res 1989;23:1053–1057.CrossRefGoogle Scholar
  32. 32.
    Valiance P, Collier J, Moncada S. Effect of endothelial-derived nitric oxide on peripheral arteriolar tone in man. Lancet 1989;2:997–1000.CrossRefGoogle Scholar
  33. 33.
    Motz W, Vogt M, Rabenau O, Scheler S, Luckhoff A, Strauer B. Evidence of endothelial dysfunction in coronary resistance vessels in patients with angina pectoris and normal coronary angiograms. Am J Cardiol 1991;68:996–1003.PubMedCrossRefGoogle Scholar
  34. 34.
    Vrints C, Bult H, Hitter E, Herman A, Snoeck J. Impaired endothelium dependent cholinergic vasodilation in patients with angina and normal coronary angiograms. J Am Coll Cardiol 1992;19:21–31.PubMedCrossRefGoogle Scholar
  35. 35.
    Egashira K, Inou T, Hirooka Y, Yamada A, Urabe Y, Takeshita A. Evidence of impaired endothelium-dependent coronary vasodilatation in patients with angina pectoris and normal coronary angiograms. N Engl J Med 1993;328:1659–64.PubMedCrossRefGoogle Scholar
  36. 36.
    Quyyumi AA, Cannon RO, Panza JA, Diodati JG, Epstein SE. Endothelial dysfunction in patients with chest pain and normal coronary arteries. Circulation 1992;86:1864–71.PubMedCrossRefGoogle Scholar
  37. 37.
    Sax FL, Cannon RO, Hanson C, Epstein SE. Impaired forearm vasodilator reserve in patients with microvascular angina. Evidence of a generalized disorder of vascular function? N Engl J Med 1987;317:1366–70.PubMedCrossRefGoogle Scholar
  38. 38.
    Quyyumi AA, Dakak N, Andrews NP, Husain S, Arora S, Gilligan DM, Panza JA, Cannon RO. Nitric oxide activity in the human coronary circulation. Impact of risk factors for coronary atherosclerosis. J Clin Invest 1995;95:1747–1755.PubMedCrossRefGoogle Scholar
  39. 39.
    Inoue A, Yanagisawa M, Kimura S et al. The human endothelin family; three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc Natl Acad Sci 1989;86:2863–2867PubMedCrossRefGoogle Scholar
  40. 40.
    Levin ER. Endothelins. N Engl J Med 1995;333(6):356–63.PubMedCrossRefGoogle Scholar
  41. 41.
    Nakamura S, Naruse M, Naruse K, Demura H, Uemura H. Immunocytochemical localization of endothelin in cultured bovine endothelial cells. Histochemistry 1990;94:475–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Xu D, Emoto N, Giald A et al. ECE-1: a membrane bound metalloproteinase that catalyses the proteolytic activation of big endothelin-1. Cell 1994;78:473–485.PubMedCrossRefGoogle Scholar
  43. 43.
    Yoshimoto S, Ishizaki Y, Sasaki T, Muroto S-I. Effect of carbon dioxide and oxygen on endothelin production by cultured porcine cerebral endothelial cells. Stroke 1991;22:378–83.PubMedCrossRefGoogle Scholar
  44. 44.
    Arai H, Hon S, Aramori I et al. Cloning and expression of cDNA encoding an endothelin receptor. Nature 1990;348:730–2..PubMedCrossRefGoogle Scholar
  45. 45.
    Sakurai T, Yanagishawa M, Takuwa Y et al. Cloning of a cDNA encoding a non isopeptide selective subtype of the endothelin receptor. Nature 1990;348:732–5.PubMedCrossRefGoogle Scholar
  46. 46.
    MacLean MR, McCulloch KM, Baird M. Endothelin ETA and ETB receptor mediated vasoconstriction in rat pulmonary arteries and arterioles. J Cardiovasc Pharm 1994;23:838–45.CrossRefGoogle Scholar
  47. 47.
    Teerlink JR, Breu V, Sprecher U et al. Potent vasoconstriction mediated by endothelin ETB receptors in canine coronary arteries. Circ Res 1994;74:105–114.PubMedCrossRefGoogle Scholar
  48. 48.
    Haynes WG, Webb DJ. Contribution of endogenous generation of endothelin-1 to basal vascular tone. Lancet 1994;344:852–4.PubMedCrossRefGoogle Scholar
  49. 49.
    Douglas SA, Vickery CL, Louden C, Ohlstein EH. Selective ETa receptor antagonism with BQ-123 is insufficient to inhibit angioplasty induced neointima formation in the rat. Cardiovasc Res 1995; 29:6416.Google Scholar
  50. 50.
    Wieczorek I, Haynes WG, Webb DJ, Ludlam CA, Fox KAA. Raised plasma endothelin levels in unstable angina and non-Q wave myocardial infarction: relation to cardiovascular outcome. Br Heart J 1994; 72:436–441.PubMedCrossRefGoogle Scholar
  51. 51.
    Bogaty P, Hackett D, Davies G, Maseri A. Vasoreactivity of the culprit lesion in unstable angina. Circulation 1994; 90:5–11.PubMedCrossRefGoogle Scholar
  52. 52.
    Krüger D, Sheikhzadeh A, Giannitsis E, Stierle U. Cardiac release and kinetics of endothelin after severe short-lasting myocardial ischemia. J Am Coll Cardiol 1997;30:942–6.PubMedCrossRefGoogle Scholar
  53. 53.
    Toyooka T, Aizawa T, Suzuki N et al. Increased plasma level of endothelin-1 and coronary spasm induction in patients with vasospastic angina pectoris. Circulation 1991;83:476–83.CrossRefGoogle Scholar
  54. 54.
    Artigou JY, Salloum J, Carayon A et al. Variations in plasma endothelin concentrations during coronary spasm. Eur Heart J 1993;14:780–4.PubMedCrossRefGoogle Scholar
  55. 55.
    Smith TP, Zhang L, Gugino SF, Russell JA, Canty JM. Differential effect of endothelin on coronary conduit and resistance arteries. Circulation 1995;92(Suppl.):I-320.CrossRefGoogle Scholar
  56. 56.
    Dashwood MR, Timm M, Kaski JC. Regional variations in ETA/ETB binding sites in human coronary vasculature. J Cardiovasc Pharmacol 1995;26:351–4.Google Scholar
  57. 57.
    Kaski JC, Elliott PM, Salomone O, et al. Concentration of circulating plasma endothelin in patients with angina and normal coronary angiograms. Br Heart J 1995;74:620–4.PubMedCrossRefGoogle Scholar
  58. 58.
    Kaski JC, Cox ID, Crook R, Salomone OA, Fredericks S, Hann C, Holt D. Differential plasma endothelin levels in subgroups of patients with angina and angiographically normal coronary arteries. Am Heart J (in press).Google Scholar
  59. 59.
    Opherk D, Schuler G, Wetterauer K, Manthey J, Schwartz F, Kubler W. Four year follow-up study in patients with angina and normal coronary arteriograms (“syndrome X”). Circulation 1989;80:1610–19.PubMedCrossRefGoogle Scholar
  60. 60.
    Greemberg MA, Grose RM, Neuberger N, Silverman R, Strain JE, Cohen MV. Impaired coronary vasodilator responsiveness as a cause of lactate production during pacing-induced ischemia in patients with angina pectoris and normal coronary arteries. J Am Coll Cardiol 1987;9:743–51.CrossRefGoogle Scholar
  61. 61.
    Sonneblick EH, Fein F, Capasso JM, Factor SM. Microvascular spasm as a cause of cardiomyopathies and the calcium channel blocking agent verapamil as potential primary therapy. Am J Cardiol 1985;55:179–84.CrossRefGoogle Scholar
  62. 62.
    Cox ID, Schwartzman RA, Atienza F, Brown SJ, Kaski JC. Angiographic progression in patients with angina pectoris and normal or near normal coronary angiograms who are restudied due to unstable symptoms. Eur Heart J 1998;19:1027–1033.PubMedCrossRefGoogle Scholar
  63. 63.
    Kaski JC, Rosano GM, Dickinson K, Martuscelli E, Romeo F. Syndrome X as a consequence of myocardial infarction. Am J Cardiol 1994;74:494–5.PubMedCrossRefGoogle Scholar
  64. 64.
    Penny WJ, Tweddle AC, Martin W, Henderson AH. Microvascular angina may be a legacy of coronary thrombolysis. Eur Heart J 1990;11:1049–52.PubMedGoogle Scholar
  65. 65.
    Salomone A, Elliott PM, Calvino R, Holt D, Kaski JC. Plasma immunoreactive endothelin concentration correlates with severity of coronary artery disease in patients with stable angina pectoris and normal ventricular function. J Am Coll Cardiol 1996;28:4–19.CrossRefGoogle Scholar
  66. 66.
    Zeiher A, Goebel H, Schlachinger V, Ihling C. Tissue endothelin-1 immunoreactivity in the active coronary atherosclerotic plaque: A clue to the mechanism of increased vasoreactivity of the culprit lesion in unstable angina. Circulation 1995; 91:941–947.PubMedCrossRefGoogle Scholar
  67. 67.
    Dashwood MR, Timm M, Kaski JC. Regional variations in ETa/ETb binding sites in human coronary vasculature. J Cardiovasc Pharmacol 1995; 26:5351–4.Google Scholar
  68. 68.
    Timm M, Kaski JC, Dashwood MR. Endothelin-like immunoreactivity in atherosclerotic human coronary arteries. J Cardiovasc Pharmacol 1995; 26:5442–4.Google Scholar
  69. 69.
    Glagov S, Weisenberg E, Zarins C, Stankunavicius R, Kolettis G. Compensatory enlargement of human atherosclerotic arteries. N Engl J Med 1987;316:1371–1375.PubMedCrossRefGoogle Scholar
  70. 70.
    Wiedermann O, Schwartz A, Apfelbaum M. Anatomic and physiologic heterogeneity in patients with syndrome X. J Am Coll Cardiol 1995;25:1310–7.PubMedCrossRefGoogle Scholar
  71. 71.
    Nishimura RA, Lerman A, Chesebro JH, et al. Epicardial vasomotor responses to acetylcholine are not predicted by coronary atherosclerosis as assessed by intracoronary ultrasound. J Am Coll Cardiol 1995;26:41–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Cox ID, Clague J, Bagger JP, Ward DE, Kaski JC. Heterogeneity of endothelial responses in cardiac syndrome X cannot be explained solely by the presence of epicardial subangiographic atheroma. J Am Coll Cardiol 1997; 29 (Suppl A):156A.Google Scholar
  73. 73.
    Huelmos A, Garcia Velloso MJ, Gil MJ, Richter JA, Alegria E, Martinez-Caro D. Myocardial perfusion reserve and endothelin plasmatic levels in asymptomatic patients with cardiovascular risk factors. Eur Heart J 1997;18 (Suppl):P2408.Google Scholar
  74. 74.
    Kaski J, Crea F, Nihoyannopoulos P, Collins P, Maseri A, Poole-Wilson P. Syndrome X: clinical characteristics and left ventricular function - a long term follow-up study. J Am Coll Cardiol 1995;25:807–814.PubMedCrossRefGoogle Scholar
  75. 75.
    Cannon RO. Microvascular angina: cardiovascular investigations regarding pathophysiology and management. Med Clin North Am 1988;75:1097–1118.Google Scholar
  76. 76.
    Sarrel P, Lindsay D, Rosano G, Poole-Wilson P. Angina and normal coronary arteries: gynecological findings. Am J Obstet Gynaecol 1992;167:467–472.Google Scholar
  77. 77.
    Sarrel P. Role of estrogen deficiency in women with syndrome X. In: Angina pectoris with normal coronary arteries: Syndrome X. Ed. Kaski JC (Kluwer Academic Publishers, Massachusetts 1994) pp.249–266.CrossRefGoogle Scholar
  78. 78.
    Newby DE, Boon DA, Webb DJ. Abnormal endothelin-1 sensitivity with preservation of nitric oxide. J Am Coll Cardiol 1996;29:193A.Google Scholar
  79. 79.
    Raffa RB, Shupsky JJ, Martinez RP, Jacoby HI. Endothelin-l-induced nociception. Life Sci 1991;49: PL61–5.CrossRefGoogle Scholar
  80. 80.
    Rosen SD, Uren NG, Kaski JC, Tousoulis D, Davies GJ, Camici PG. Coronary vasodilator reserve, pain perception, and sex in patients with syndrome X. Circulation 1994;90: 50–60.PubMedCrossRefGoogle Scholar
  81. 81.
    Lagerqvist B, Sylven C, Waldenstrom A. Lower threshold for adenosine-induced chest pain in patients with angina and normal coronary angiograms. Br Heart J 1992;68: 282–5.PubMedCrossRefGoogle Scholar
  82. 82.
    Turiel M, Galassi AR, Glazier JJ, Kaski JC, Maseri A. Pain threshold and tolerance in women with syndrome X and women with stable angina pectoris. Am J Cardiol 1987;60: 503–7.PubMedCrossRefGoogle Scholar
  83. 83.
    Cox ID, Salomone O, Brown SJ, Hann CM, Kaski JC. Serum endothelin levels and pain perception in patients with cardiac syndrome X and healthy controls. Am J Cardiol 1997;80:637–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Ian D. Cox
  • Juan Carlos Kaski

There are no affiliations available

Personalised recommendations