Skip to main content

Chemical Modifications of Triple Helix Forming Oligonucleotides

  • Chapter

Part of the book series: Perspectives in Antisense Science ((DARE,volume 2))

Abstract

Ever since its initial discovery, the triple-helix structure (1), because of possible applications in biotechnology, diagnostics, and therapeutics, has attracted considerable attention (25). It has been demonstrated that homopurine-homopyrimidine tracts of DNA can be targeted by third strand oligonucleotides which bind to the major groove of DNA, and held in place to purine bases by specific hydrogen bonds. A homopyrimidine third strand binds parallel to the purine strand of the double-stranded target forming T.A × T and C+.G × C (where C+ indicates protonated cytosine and the symbol x stands for Watson-Crick hydrogen bonds) isomorphous base triplets via Hoogsteen hydrogen bonding, whereas a purine third strand binds in an anti-parallel orientation forming G.G × C and A.A × T base triplets via reverse Hoogsteen hydrogen bonding. G and T containing oligonucleotides can also form triplexes. In this case, the orientation of the third strand is sequence-dependent.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fesenfeld, G., Davies, D. R. and Rich, A. (1957). Formation of a three-stranded polynucleotide molecule. J. Am. Chem. Soc. 79, 2023–2024.

    Article  Google Scholar 

  2. Thuong, N.T. and Hélène, C. (1993). Sequence-specific recognition and modification of double-helical DNA by oligonucleotides. Angew. Chem. Int. Ed. 32, 666–690.

    Article  Google Scholar 

  3. Soyfer, V. N. and Potoman, V. (1996). Triple-helical nucleic acids. Springer-Verlag,New York.

    Google Scholar 

  4. Sun, J.-S., Garestier, T. and Hélène C. (1996). Oligonucleotide directed triple helix formation. Current Opinion in Structural Biology. 6, 327–333.

    Article  PubMed  CAS  Google Scholar 

  5. Doronina, S. O. and Behr, J.-P. (1997). Towards a general triple helix mediated DNA recognition. Chem. Soc. Rev. 63–71.

    Google Scholar 

  6. Chaturvedy, S., Horn, T. and Letsinger R. L. (1996). Stabilization of triple-stranded oligonucleotide complexes: use of probes containing alternating phosphodiester and stereo-uniform cationic phosphoramidate linkages. Nucleic Acids Res. 24, 2318–2323.

    Article  Google Scholar 

  7. Gryaznov, S. M., Lloyd, D.H., Chen, J.-K., Schultz, R. N., DeDionisio, L. A., Ratmeyer, L. and Wilson, W. D. (1995). Oligonucleotide N3′→P5′ phosphoramidates. Proc. Natl. Acad. Sci. USA. 92, 5798–5802.

    Article  PubMed  CAS  Google Scholar 

  8. Jones, R. J., Swaminathan, S., Milligan, J. F., Wadwani, S., Froehler, B.C. and Matteucci, M. D. (1993). Oligonucleotides containing a covalent conformationally restricted phosphodiester analog for high-affinity triple helix formation: The riboacetal internucleotide linkage. J. Am. Chem. Soc. 115, 9816–9817.

    Article  CAS  Google Scholar 

  9. Blasko, A., Dempcy, R. O., Minyat, E. E. and Bruice, T. C. (1996). Association of short-strand DNA oligomers with guanidinium-linked nucleosides. A kinetic and thermodynamic study. J. Am. Chem. Soc. 118, 7892–7899.

    Article  CAS  Google Scholar 

  10. Dueholm, K. L. and Nielsen, P. E. (1997). Chemistry, properties and applications of PNA. New J. Chem. 21, 19–31.

    CAS  Google Scholar 

  11. Cuenoud, B., Casset, F., Hüsken, D., Natt, F., Wolf, R. M., Altmann, K.-H., Martin, P. and Moser, K. H. (1998). Dual recognition of double-stranded DNA by 2′-aminoethoxy-modified oligonucleotides. Angew. Chem. Int. Ed. Engl. 37, 1288–1291.

    Article  CAS  Google Scholar 

  12. Jones, G. D., Altmann, K.-H., Hüsken, D. and Walker, R. T. (1997). Duplex and triplex-forming properties of 4′-thio-modified oligodeoxynucleotides. Bioorganic & Medicinal Chemistry Lett. 7, 1275–1278.

    Article  CAS  Google Scholar 

  13. Froehler, B.C. and Ricca, D. J. (1992). Triple-helix formation by oligonucleotides containing the carbocyclic analogs of thymidine and 5-methyl-2′-deoxycytidine. J. Am. Chem. Soc. 114, 8320–8322.

    Article  CAS  Google Scholar 

  14. Posvic, T. J. and Dervan, P. B. (1989). Triple helix formation by oligonucleotides on DNA extended to the physiological pH range. J. Am. Chem. Soc. 111, 3059–3061.

    Article  Google Scholar 

  15. Froehler, B.C., Wadwani, S., Terhorst, T. J. and Gerrard, S. R. (1992). Oligonucleotides containing C-5 propyne analogs of 2′-deoxyuridine and 2′-deoxycytidine. Tetrahedron Lett. 33, 5307–5310.

    Article  CAS  Google Scholar 

  16. Ono, A., Ts’o, P. O. P. and Kan, L.-S. (1992). Triplex formation of an oligonucleotide containing 2′-O-methylpseudoisocytidine with a DNA duplex at neutral pH. J. Org. Chem. 57, 3225–3230.

    Article  CAS  Google Scholar 

  17. Priestley, E. S. and Dervan, P. B. (1995). Sequence composition effects on the energetics of triple helix formation by oligonucleotides containing a designed mimic of protonated cytosine. J. Am. Chem. Soc. 117, 4761–4765.

    Article  CAS  Google Scholar 

  18. Brunar, H. and Dervan, P. B. (1996). Sequence composition effects on the stabilities of triple helix formation by oligonucleotides containing N7-deoxyguanosine. Nucleic Acids Res. 24, 1987–1991.

    Article  PubMed  CAS  Google Scholar 

  19. Hildbrand, S., Blaser, A., Parel, S. P. and Leumann, C. J. (1997). 5-Substituted 2-aminopyridine C-Nucleosides as protonated cytidine equivalents: increasing efficiency and selectivity in DNA triple-helix formation. J. Am. Chem. Soc. 119, 5499–5511.

    Article  CAS  Google Scholar 

  20. Milligan, J. F., Krawczyk, S. H., Wadwani, S. and Matteucci, M. D. (1993). An anti-parallel triple helix motif with oligodeoxynucleosides containing 2′-deoxyguanosine and 7-deaza-2′-deoxyxanthosine. Nucleic Acids Res. 21, 327–333.

    Article  PubMed  CAS  Google Scholar 

  21. Ono, A., Chen, C.-N. and Kan, L.-S. (1991). DNA triplex formation of oligonucleotide analogues consisting of linker groups and octamer segments that have opposite sugar-phosphate backbone polarities. Biochemistry 30, 9914–9921.

    Article  PubMed  CAS  Google Scholar 

  22. Horne, D. A. and Dervan, P. B. (1990). Recognition of mixed-sequence duplex DNA by alternate-strand triple-helix formation. J. Am. Chem. Soc. 112, 2435–2437.

    Article  CAS  Google Scholar 

  23. Froehler, B.C., Terhorst, T., Shaw, J.-P. and McCurdy, S. N. (1992). Triple-helix formation and cooperative binding by oligonucleotides with a 3′—3′ internucleotide junction. Biochemistry 31, 1603–1609

    Article  PubMed  CAS  Google Scholar 

  24. De Napoli, L., Messere, A., Montesarchio, D., Pepe, A., Piccialli, G. and Varra, M. (1997). Synthesis and triple helix formation by alternate strand recognition of oligonucleotides containing 3′-3′ phosphodiester bonds. J. Org. Chem. 62, 9024–9030.

    Article  Google Scholar 

  25. Zhou, B.-W., Marchand, C., Asseline, U., Thuong, N.T., Sun, J.-S., Garestier, T. and Hélène, C. (1995). Recognition of alternating oligopurine/oligopyrimidine tracts of DNA by oligonucleotides with base-to-base linkages. Bioconjugate Chem. 6, 516–523.

    Article  CAS  Google Scholar 

  26. Asseline, U. and Thuong, N. T. (1994). 5′-5′ Tethered oligonucleotides via nucleic bases: A potential new set of compounds for alternate strand triple-helix formation. Tetrahedron Lett. 35, 5221–5224.

    Article  CAS  Google Scholar 

  27. Szewczyk, J. W., Baird, E. E. and Dervan, P. B. (1996). Cooperative triple-helix formation via a minor groove dimerization domain. J. Am. Chem. Soc. 118, 6778–6779.

    Article  CAS  Google Scholar 

  28. Horne, D. A. and Dervan, P. B. (1991). Effects of an abasic site on triple helix formation characterized by affinity cleaving. Nucleic Acids Res. 19, 4963–4965.

    Article  PubMed  CAS  Google Scholar 

  29. Durland, R. H., Rao, T. S., Bodepudi, V., Seth, D. M., Jayaraman, K. and Revankar, G. R. (1995). Azole substituted oligonucleotides promote antiparallel triplex formation at non-homopurine duplex target. Nucleic Acids Res. 23, 647–653.

    Article  PubMed  CAS  Google Scholar 

  30. Mergny, J. L., Sun, J.-S., Rougée, M., Montenay-Garestier, T., Barcelo, F., Chomilier, J. and Hélène, C. (1991). Sequence specificity in triple-helix formation: experimental and theoretical studies of the effect of mismatches on triplex stability. Biochemistry 30, 9791–9798.

    Article  PubMed  CAS  Google Scholar 

  31. Verma, S. and Miller, P.S. (1996). Interactions of cytosine derivatives with T.A interruptions in pyrimidine.purine.pyrimidine DNA triplexes. Bioconjugate Chem. 7, 600–605.

    Article  CAS  Google Scholar 

  32. Huang, C.-Y., Bi, G. and Miller, P. S. (1996). Triplex formation by oligonucleotides containing novel deoxycytidine derivatives. Nucleic Acids Res. 24, 2606–2613.

    Article  PubMed  CAS  Google Scholar 

  33. Lehmann, T. E., Greenberg, W. A., Liberles, D. A., Wada, C. K. and Dervan, P. B. (1997). Triple-helix formation by pyrimidine oligonucleotides containing nonnatural nucleosides with extended aromatic nucleobases: intercalation from the major groove as a method for recognizing C.G and T.A base pairs. Helvetica Chemica Acta 80, 2002–2022.

    Article  CAS  Google Scholar 

  34. Asseline, U., Thuong, N.T. and Hélène, C. (1997). Synthesis and properties of oligonucleotides covalently linked to intercalating agents. New J. Chem. 21, 5–17.

    CAS  Google Scholar 

  35. Garbesi, A., Bonazzi, S., Zanella, S., Capobianco, M. L., Giannini, G. and Arcamone, F. (1997). Synthesis and binding properties of conjugates between oligodeoxynucleotides and daunorubicin derivatives. Nucleic Acids Res. 25, 2121–2128.

    Article  PubMed  CAS  Google Scholar 

  36. Silver, G. C., Sun, J. S., Nguyen, C. H., Boutorine, A. S., Bisagni, E. and Hélène, C. (1997). Stable triple-helical DNA complexes formed by benzopyridoindole and benzopyrido-quinoxaline-oligonucleotide conjugates. J. Am. Chem. Soc. 119, 263–268.

    Article  CAS  Google Scholar 

  37. Silver, G. C., Nguyen, C. H., Boutonne, A. S., Bisagni, E., Garestier, T. and Hélène, C. (1997). Conjugates of oligonucleotides with triplex-specific intercalating agents. Stabilization of triple-helical DNA in the promoter region of the gene for the α-subunit of interleukin 2 (IL-2Rα). Bioconjugate Chem. 8, 15–22.

    Article  CAS  Google Scholar 

  38. Robles, J., Rajur, S. B. and McLaughlin, L. W. (1996). A parallel-stranded DNA triplex tethering a Hoechst 33258 analogue results in complex stabilization by simultaneous major groove and minor groove binding. J. Am. Chem. Soc. 118, 5820–5821.

    Article  CAS  Google Scholar 

  39. Szewczyk, J. W., Baird, E. E. and Dervan, P. B. (1996). Sequence-specific recognition of DNA by a major and minor groove binding ligand. Angew. Chem. Int. Ed. Engl. 35, 1487–1489.

    Article  CAS  Google Scholar 

  40. Tung, C.-H., Breslauer, K. J. and Stein, S. (1993). Polyamine-linked oligonucleotides for DNA triple helix formation. Nucleic Acids Res. 21, 5489–5494.

    Article  PubMed  CAS  Google Scholar 

  41. Rajeev, K. G., Jadhav, V.R. and Ganesh K. N. (1997). Triplex formation at physiological pH: comparative studies on DNA triplexes containing 5-Me-dC tethered at N4 with spermine and tetraethyleneoxyamine. Nucleic Acids Res. 25, 4187–4193.

    Article  PubMed  CAS  Google Scholar 

  42. Tung, C.-H., Breslauer, K. J., and Stein, S. (1996). Stabilization of DNA triple-helix formation by appended cationic peptides. Bioconjugate Chem. 7, 529–531.

    Article  CAS  Google Scholar 

  43. Sergeyev, D.S., Godovikova, T. S. and Zarytova, V. F. (1995). Catalytic site-specific cleavage of a DNA-target by an oligonucleotide carrying bleomycin A5. Nucleic Acids Res. 23, 4400–4406.

    Article  PubMed  CAS  Google Scholar 

  44. Giovannangeli, C., Diviacco, S., Labrousse, V., Gryaznov, S., Chameau, P. and C. Hélène. (1997). Accessibility of nuclear DNA to triplex-forming oligonucleotides: the integrated HIV-1 provirus as a target. Proc. Natl. Acad. Sci. USA., 94, 79–84.

    Article  PubMed  CAS  Google Scholar 

  45. Shaw, J.-P., Milligan, J. F., Krawczyk, S. H. and Matteucci, M. (1991). Specific, high-efficiency, triple-helix-mediated cross-linking to duplex DNA. J. Am. Chem. Soc. 113, 7765–7766.

    Article  CAS  Google Scholar 

  46. Lukhtanov, E. A., Mills, A. G., Kutyavin, I. V., Gorn, V. V., Reed, M. W. and Meyer, R. B. (1997). Minor groove DNA alkylation directed by major groove triplex forming oligodeoxyribonucleotides. Nucleic Acids Res. 25 5077–5084.

    Article  PubMed  CAS  Google Scholar 

  47. Matteucci, M., Lin, K.-Y., Huang, T., Wagner, R., Sternbach, D. D., Mehrotra, M. and Besterman, J. M. (1997). Sequence-specific targeting of duplex DNA using a camptothecin-triple helix forming oligonucleotide conjugate and topoisomerase I. J. Am. Chem. Soc. 119, 6939–6940.

    Article  CAS  Google Scholar 

  48. Giovannangeli, C., Montenay-Garestier, T., Rougée, M., Chassignol, M., Thuong, N. T. and Hélène, C. (1991). Single-Stranded DNA as a Target for triple-helix formation. J. Am. Chem. Soc. 113, 7775–7777.

    Article  CAS  Google Scholar 

  49. Giovannangeli, C., Thuong, N.T. and Hélène, C. (1993). Oligonucleotide clamp arrest DNA synthesis on a single-stranded DNA target. Proc. Natl. Acad. Sci. USA. 90, 10013–10017.

    Article  PubMed  CAS  Google Scholar 

  50. Kool, E. T. (1997). Design of triplex-forming oligonucleotides for binding DNA and RNA: optimizing affinity and selectivity. New J. Chem. 21, 33–45.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Asseline, U. (1999). Chemical Modifications of Triple Helix Forming Oligonucleotides. In: Malvy, C., Harel-Bellan, A., Pritchard, L.L. (eds) Triple Helix Forming Oligonucleotides. Perspectives in Antisense Science, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5177-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5177-5_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7358-2

  • Online ISBN: 978-1-4615-5177-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics