Skip to main content

Part of the book series: Perspectives in Antisense Science ((DARE,volume 2))

Summary

The applications of triple helix forming oligonucleotides can be limited by the relatively low stability of triple helical complexes. Ligands which can bind more tightly to triple helical DNA than to double-helical DNA can stabilize triple helices. This chapter reviews the structural aspects of triple helix ligand complexes and briefly discusses the possible use or role of triple helix stabilizing agents in triplex-based strategies or mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Scaria, P. V. and Shafer, R. H. (1991). Binding of ethidium bromide to a DNA triple helix. J. Biol. Chem. 266, 5417–5423.

    PubMed  CAS  Google Scholar 

  2. Mergny, J. L., Collier, D., Rougée, M., Montenay-Garestier, T. and Hélène, C. (1991). Intercalation of ethidium bromide in a triple stranded oligonucleotide. Nucl. Acids Res. 19, 1521–1526.

    Article  PubMed  CAS  Google Scholar 

  3. Mergny, J. L., Duval-Valentin, G., Nguyen, C. H., Perrouault, L., Faucon, B., Rougée, M., Montenay-Garestier, T., Bisagni, E. and Hélène, C. (1992). Triple Helix-Specific Ligands. Science 256, 1681–1684.

    Article  PubMed  CAS  Google Scholar 

  4. Lee, J. S., Latimer, L. J. P. and Hampel, K. J. (1993). Coralyne binds tightly to both T.A.T and C.G.C+-containing DNA triplexes. Biochemistry 32, 5591–5597.

    Article  PubMed  CAS  Google Scholar 

  5. Latimer, L. J. P., Payton, N., Forsyth, G. and Lee, J. S. (1995). The binding of analogues of coralyne and related heterocyclics to DNA triplexes. Biochem. Cell. Biol. 73, 11–18.

    Article  PubMed  CAS  Google Scholar 

  6. Tarui, M., Doi, M., Ishida, T., Inoue, M., Nakaike, S. and Kitamura, K. (1994) DNA-binding characterization of a novel anti-tumour benzo[a]phenazine derivative NC-182: spectroscopic and viscosimetric studies. Biochem. J. 304, 271–279.

    PubMed  CAS  Google Scholar 

  7. Fox, K. R., Thurston, D.E., Jenkins, T. C., Varvaresou, A., Tsotinis, A. and Siatrapapastaikoudi, T. (1996). A novel series of DNA triple helix-binding ligands. Biochem. Biophys. Res. Comm. 224, 717–720.

    Article  PubMed  CAS  Google Scholar 

  8. Wilson, W. D., Tanious, F. A., Mizan, S., Yao, S., Kiselyov, A. S., Zon, G. and Strekowski, L. (1993). DNA triple-helix specific intercalators as antigène enhancers: unfused aromatic cations. Biochemistry 32, 10614–10621.

    Article  PubMed  CAS  Google Scholar 

  9. Fox, K. R., Polucci, P., Jenkins, T. C. and Neidle, S. (1995). A molecular anchor for stabilizing triple-helical DNA. Proc. Natl. Acad. Sci. USA 92, 7887–7891.

    Article  PubMed  CAS  Google Scholar 

  10. Baudoin, O., Marchand, C., Teulade-Fichou, M.-P., Vigneron, J.-P., Sun, J. S., Garestier, T., Hélène, C. and Lehn, J. M. (1998). Stabilization of DNA triple helices by crescent-shaped dibenzophenanthrolines. Chemistry: a European Journal, in press.

    Google Scholar 

  11. Choi, S.-D., Kim, M.-S., Kim, S. K., Lincoln, P., Tuite, E. and Norden, B. (1997). Binding mode of [Ruthenium(II)(1,10-Phenanthroline)2L]2+ with poly(dT × dA-dT) triplex. ligand size effect on third-strand stabilization. Biochemistry 36, 214–223.

    Article  PubMed  CAS  Google Scholar 

  12. Pilch, D.S., Martin, M. T., Nguyen, C. H., Sun, J. S., Bisagni, E., Garestier, T. and Hélène, C. (1993). Self-association and DNA-binding properties of two triple helix-specific ligands: comparison of a benzo[e]-and a benzo[g]pyridoindole. J. Am. Chem. Soc. 115, 9942–9951.

    Article  CAS  Google Scholar 

  13. Pilch, D. S., Waring, M. J., Sun, J. S., Rougée, M., Nguyen, C. H., Bisagni, E., Garestier, T. and Hélène, C. (1993). Characterization of a triple helix-specific ligand. J. Mol Biol. 232, 926–946.

    Article  PubMed  CAS  Google Scholar 

  14. Kim, S. K., Sun, J. S., Garestier, T., Hélène, C., Bisagni, E., Rodger, A. and Norden, B. (1997). Binding geometries of triple helix selective benzopyrido[4,3-b]indole ligands complexed with double-and triple-helical polynucleotides. Biopolymers 42, 101–111.

    Article  CAS  Google Scholar 

  15. Escudé, C., Nguyen, C. H., Mergny, J. L., Sun, J. S., Bisagni, E., Garestier, T. and Hélène, C. (1995). Selective stabilization of DNA triple helices by benzopyridoindole derivatives. J. Am. Chem. Soc. 117, 10212–10219.

    Article  Google Scholar 

  16. Escudé, C., Mohammadi, S., Sun, J.-S., Nguyen, C.-H., Bisagni, E., Liquier, J., Taillandier, E., Garestier, T. and Hélène, C. (1996). Ligand-induced formation of Hoogsteen-paired parallel DNA. Chem. Biol. 3, 57–65.

    Article  PubMed  Google Scholar 

  17. Nguyen, C. H., Fan, E., Riou, J.-F., Bissery, M.-C., Vrignaud, P., Lavelle, F. and Bisagni, E. (1995). Synthesis and biological evaluation of amino-substituted benzo[f]pyrido[4,3-b] and pyrido[3,4-b]quinoxalines: a new class of antineoplastic agents. Anti-Cancer Drug Design 10, 277–297.

    PubMed  CAS  Google Scholar 

  18. Escudé, C., Nguyen, C., Kukreti, S., Janin, Y., Sun, J., Bisagni, E., Garestier, T. and Hélène, C. (1998). Rational design of a triple helix-specific intercalating ligand. Proc. Natl. Acad. Sci. USA 95, 3591–3596.

    Article  PubMed  Google Scholar 

  19. Nguyen, C. H., Marchand, C., Delage, S., Sun, J. S., Garestier, T., Hélène, C. and Bisagni, E. (1998). Synthesis of 13H-Benzo[6,7] and 13H-Benzo[4,5]-Indolo[3,2-c]quinolines: a New Series of Potent Specific Ligands for Triplex DNA. J. Am. Chem. Soc. 120, 2501–2507.

    Article  CAS  Google Scholar 

  20. Strekowski, L., Gulevich, Y., Baranowski, T. C., Parker, A.N., Kiselyov, A. S., Lin, S. Y., Tanious, F. A. and Wilson, W. D. (1996). Synthesis and structure-DNA binding relationship analysis of DNA Triple-helix specific intercalators. J. Med. Chem. 39, 3980–3983.

    Article  PubMed  CAS  Google Scholar 

  21. Cassidy, S.A., Strekowski, L., Wilson, W. D. and Fox, K. R. (1994). Effect of a triplex-binding ligand on parallel and antiparallel DNA triple helices using short unmodified and acridine-linked oligonucleotides. Biochemistry 33, 15338–15347.

    Article  PubMed  CAS  Google Scholar 

  22. Haq, I., Ladbury, J. E., Chowdhry, B. Z. and Jenkins, T. C. (1996). Molecular anchoring of duplex and triplex DNA by disubstituted anthracene-9,10-diones: calorimetric, UV melting, and competition dialysis studies. J. Am. Chem. Soc. 118, 10693–10701.

    Article  CAS  Google Scholar 

  23. Kan, Y., Armitage, B. and Schuster, G. B. (1997). Selective stabilization of triplex DNA by anthraquinone sulfonamide derivatives. Biochemistry 36, 1461–1466.

    Article  PubMed  CAS  Google Scholar 

  24. Durand, M., Thuong, N.T. and Maurizot, J. C. (1992). Binding of netropsin to a DNA triple helix. J. Biol. Chem 267, 24394–24399.

    PubMed  CAS  Google Scholar 

  25. Park, Y. W. and Breslauer, K.J. (1992). Drug binding to higher ordered DNA structures — netropsin complexation with a nucleic acid triple helix. Proc. Natl. Acad. Sci. USA 89, 6653–6657.

    Article  PubMed  CAS  Google Scholar 

  26. Rentzeperis, D. and Marky, L. A. (1995). Ligand binding to the Hoogsteen-WC groove of TAT base triplets: Thermodynamic contribution of the thymine methyl groups. J. Am. Chem. Soc. 117, 5423–5424.

    Article  CAS  Google Scholar 

  27. Durand, M., Thuong, N. T. and Maurizot, J. C. (1994). Interaction of Hoechst 33258 with a DNA triple helix. Biochimie 76, 181–186.

    Article  PubMed  CAS  Google Scholar 

  28. Durand, M., Thuong, N. T. and Maurizot, J. C. (1994). Berenil complexation with a nucleic acid triple helix. J. Biomol. Struct. Dyn. 11, 1191–1202.

    Article  PubMed  CAS  Google Scholar 

  29. Pilch, D.S. and Breslauer, K.J. (1994). Ligand-induced formation of nucleic acid triple helices. Proc. Natl. Acad. Sci. USA 91, 9332–9336.

    Article  PubMed  CAS  Google Scholar 

  30. Durand, M. and Maurizot, J. C. (1996). Distamycin A complexation with a nucleic acid triple helix. Biochemistry 35, 9133–9139.

    Article  PubMed  CAS  Google Scholar 

  31. Stonehouse, T. J. and Fox, K. R. (1994). DNasel footprinting of triple helix formation at polypurine tracts by acridine-linked oligopyrimidines: Stringency, structural changes and interaction with minor groove binding ligands. Biochimica et Biophysica Acta — Gene Structure and Expression 1218, 322–330.

    Article  CAS  Google Scholar 

  32. Pilch, D.S., Levenson, C. and Shafer, R. H. (1990). Structural analysis of the (dA)10.2(dT10) triple helix. Proc. Natl. Acad Sci. USA 87, 1942–1946.

    Article  PubMed  CAS  Google Scholar 

  33. Hampel, K.J., Crosson, P. and Lee, J. S. (1991). Polyamines favor DNA triplex formation at neutral pH. Biochemistry 30, 4455–4459.

    Article  PubMed  CAS  Google Scholar 

  34. Thomas, T. and Thomas, T. J. (1993). Selectivity of polyamines in triplex DNA stabilization. Biochemistry 32, 14068–14074.

    Article  PubMed  CAS  Google Scholar 

  35. Pallan, P.S. and Ganesh, K. N. (1996). DNA Triple Helix Stabilization by Bisguanidinyl Analogues of Biogenic Polyamines. Biochem. Biophys. Res. Com. 222, 416–420.

    Article  PubMed  CAS  Google Scholar 

  36. Thomas, T. J., Kulkarni, G. D., Greenfield, N. J., Shirahata, A. and Thomas, T. (1996). Structural specificity effects of trivalent polyamine analogues on the stabilization and conformational plasticity of triplex DNA. Biochem. J. 319, 591–599.

    PubMed  CAS  Google Scholar 

  37. Musso, M., Thomas, T., Shirahata, A., Sigal, L. H., VanDyke, M. W. and Thomas, T. J. (1997). Effects of chain length modification and bis(ethyl) substitution of spermine analogs on purine-purine-pyrimidine triplex DNA stabilization, aggregation, and conformational transitions. Biochemistry 36, 1441–1449.

    Article  PubMed  CAS  Google Scholar 

  38. Potaman, V. N. and Sinden, R. R. (1995). Stabilization of triple-helical nucleic acids by basic oligopeptides. Biochemistry 34, 14885–14892.

    Article  PubMed  CAS  Google Scholar 

  39. Maruyama, A., Katoh, M., Ishihara, T. and Akaike, T. (1997). Comb-Type Polycations Effectively Stabilize DNA Triplex. Bioconjugate Chemistry 8, 3–6.

    Article  PubMed  CAS  Google Scholar 

  40. Escudé, C., Sun, J. S., Nguyen, C. H., Bisagni, E., Garestier, T. and Hélène, C. (1996). Ligand-induced formation of triple helices with antiparallel third strands containing G and T. Biochemistry 35, 5735–5740.

    Article  PubMed  Google Scholar 

  41. Keppler, M. D. and Fox, K. R. Proceedings of the 4th international meeting on recognition studies in nucleic acids (NACON IV), Sheffield, April 1998.

    Google Scholar 

  42. Giovannangeli, C., Perrouault, L., Escudé, G., Thuong, N. and Hélène, C. (1996). Specific inhibition of in vitro transcription elongation by triplex-forming oligonucleotide-intercalator conjugates targeted to HIV proviral DNA. Biochemistry 35, 10539–10548.

    Article  PubMed  CAS  Google Scholar 

  43. Kukreti, S., Sun, J., Loakes, D., Brown, D., Nguyen, C., Bisagni, E., Garestier, T. and Hélène, C. (1998). Triple helices formed at oligopyrimidine.oligopurine sequences with base pair inversions: effect of a triplex-specific ligand on stability and selectivity. Nucl. Acids Res. 26, 2179–2184.

    Article  PubMed  CAS  Google Scholar 

  44. Chandler, S. P., Strekowski, L., Wilson, W. D. and Fox, K. R. (1995). Footprinting studies on ligands which stabilize DNA triplexes: Effects on stringency within a parallel triple helix. Biochemistry 34, 7234–7242.

    Article  PubMed  CAS  Google Scholar 

  45. Thomas, T. J., Faaland, C. A., Gallo, M. A. and Thomas, T. (1995). Suppression of c-myc oncogene expression by a polyamine-complexed triplex forming oligonucleotide in MCF-7 breast cancer cells. Nucl. Acids Res. 23, 3594–3599.

    Article  PubMed  CAS  Google Scholar 

  46. Duval-Valentin, G., Debizemont, T., Takasugi, M., Mergny, J. L., Bisagni, E. and Hélène, C. (1995). Triple-helix specific ligands stabilize H-DNA conformation. J. Mol. Biol. 247, 847–858.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Escudé, C., Garestier, T. (1999). Triple Helix Stabilizing Agents. In: Malvy, C., Harel-Bellan, A., Pritchard, L.L. (eds) Triple Helix Forming Oligonucleotides. Perspectives in Antisense Science, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5177-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5177-5_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7358-2

  • Online ISBN: 978-1-4615-5177-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics