Skip to main content

Part of the book series: Perspectives in Antisense Science ((DARE,volume 2))

Abstract

The term H DNA was coined in 1985 by Victor Lyamichev, Maxim Frank- Kamenetskii and myself (1). Our work was inspired by numerous studies showing that many regulatory regions of eukaryotic genes, both in chromatin and in the cloned state, exhibited hypersensitivity to nucleases and chemicals specific towards single-stranded DNA. Mapping revealed that these hypersensitive sites are commonly located within homopurine-homopyrimidine stretches of varying lengths and base composition (reviewed in 2). Except for being homopurine-homopyrimidine, those stretches lacked apparent similarities. Several structures were proposed to explain the hypersensitivity of different homopurine-homopyrimidine motifs (311), but none of them could be satisfactorily applied to all these sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lyamichev, V. I., Mirkin, S. M. and Frank-Kamenetskii, M. D. (1985). A pH-dependent structural transition in the homopurine-homopyrimidine tract in superhelical DNA. J. Biomol. Struct. Dyn. 3, 327–338.

    Article  PubMed  CAS  Google Scholar 

  2. Wells, R. D., Collier, D. A., Hanvey, J. C., Shimizu, M. and Wohlrab, F. (1988). The chemistry and biology of unusual DNA structures adopted by oligopurineoligo-pyrimidine sequences. FASEB. J. 2, 2939–2949.

    PubMed  CAS  Google Scholar 

  3. Hentchel, C. C. (1982). Homocopolymer sequences in the spacer of a sea urchin histone gene repeat are sensitive to S1 nuclease. Nature 29, 714–716.

    Article  Google Scholar 

  4. Mace, H. A. F., Pelham, H. R. B. and Travers, A. (1983). Association of an S1 nuclease-sensitive structure with short direct repeats 5′ of Drosophila heat shock genes. Nature 304, 555–557.

    Article  PubMed  CAS  Google Scholar 

  5. McKeon, C., Schmidt, A. and de-Crombrugghe, B. A. (1984). A sequence conserved in both the chicken and mouse α2(I) collagen promoter contains sites sensitive to S1 nuclease. J. Biol. Chem. 259, 6636–6640.

    PubMed  CAS  Google Scholar 

  6. Shen, C. K. (1983). Superhelicity induces hypersensitivity of a human polypyrimidine.polypurine DNA sequence in the human α2-α1 globin intergenic region to S1 nuclease digestion. Nucleic Acids Res. 11, 7899–7910.

    Article  PubMed  CAS  Google Scholar 

  7. Cantor, C. R. and Efstratiadis, A. (1984). Possible structures of homopurine-homopyrimidine S1-hypersensitive sites. Nucleic Acids Res. 12, 8059–8072.

    Article  PubMed  CAS  Google Scholar 

  8. Margot, J.B. and Hardison, R. C. (1985). DNase I and nuclease S1 sensitivity of the rabbit β-globin gene in nuclei and in supercoiled plasmids. J. Mol. Biol. 184, 195–210.

    Article  PubMed  CAS  Google Scholar 

  9. Christophe, D., Cabrer, B., Bacolla, A., Targovnik, H., Pohl, V. and Vassart, G. (1985). An unusually long poly(purine)-poly(pyrimidine) sequence is located upstream from the human thyroglobulin gene. Nucleic Acids Res. 13, 5127–5144.

    Article  PubMed  CAS  Google Scholar 

  10. Lee, J. S., Johnson, D. A. and Morgan, A. R. (1979). Complexes formed by (pyrimidine)n (purine)n DNAs on lowering the pH are three-stranded. Nucleic Acids Res. 6, 3073–3091.

    Article  PubMed  CAS  Google Scholar 

  11. Johnson, D. and Morgan, A. R. (1978). Unique structures formed by pyrimidine-purine DNAs which may be four-stranded. Proc. Natl. Acad. Sci. USA 75, 1637–1641.

    Article  PubMed  CAS  Google Scholar 

  12. Pulleyblank, D. E., Haniford, D. B. and Morgan, A. R. (1985). A structural basis for S1 nuclease sensitivity of double-stranded DNA. Cell 42, 271–280.

    Article  PubMed  CAS  Google Scholar 

  13. Htun, H., Lund, E. and Dahlberg J. E. (1984). Human U1 RNA genes contain an unusually sensitive nuclease S1 cleavage site within the conserved 3′ flanking region. Proc. Natl. Acad. Sci. USA 81, 7288–7292.

    Article  PubMed  CAS  Google Scholar 

  14. Lyamichev, V. I., Mirkin, S. M. and Frank-Kamenetskii M. D. (1986). Structures of homopurine-homopyrimidine tract in superhelical DNA. J. Biomol. Struct. Dynam. 3, 667–669.

    Article  CAS  Google Scholar 

  15. Mirkin, S. M., Lyamichev, V.I., Drushlyak, K. N., Dobrynin, V. N., Filippov, S. A. and Frank-Kamenetskii, M. D. (1987). DNA H form requires a homopurine-homopyrimidine mirror repeat. Nature 330, 495–497.

    Article  PubMed  CAS  Google Scholar 

  16. Hanvey, J. C., Shimizu, M. and Wells, R. D. (1988). Intramolecular DNA triplexes in supercoiled plasmids. Proc. Natl. Acad. Sci. USA 85, 6292–6296.

    Article  PubMed  CAS  Google Scholar 

  17. Htun, H. and Dahlberg, J. E. (1988). Single strands, triple strands and kinks in H-DNA. Science 241, 1791–1796.

    Article  PubMed  CAS  Google Scholar 

  18. Johnston, B. H. (1988). The S1-sensitive form of d(C-T)nd(A-G)n: chemical evidence for a three-stranded structure in plasmids. Science 241, 1800–1804.

    Article  PubMed  CAS  Google Scholar 

  19. Kohwi, Y. and Kohwi-Shigematsu, T. (1988). Magnesium ion-dependent triple-helix structure formed by homopurine-homopyrimidine sequences in supercoiled plasmid DNA. Proc. Natl. Acad. Sci. USA 85, 3781–3785.

    Article  PubMed  CAS  Google Scholar 

  20. Vojtiskova, M., Mirkin, S., Lyamichev, V., Voloshin, O., Frank-Kamenetskii, M. and Palecek, E. (1988). Chemical probing of the homopurinehomopyrimidine tract in supercoiled DNA at single-nucleotide resolution. FEBS Lett. 234, 295–299.

    Article  PubMed  CAS  Google Scholar 

  21. Voloshin, O. N., Mirkin, S. M., Lyamichev, V.I., Belotserkovskii, B. P. and Frank-Kamenetskii, M. D. (1988). Chemical probing of homopurinehomopyrimidine mirror repeats in supercoiled DNA. Nature 333, 475–476.

    Article  PubMed  CAS  Google Scholar 

  22. Mirkin, S. M. and Frank-Kamenetskii, M. D. (1994). H-DNA and related structures. Annu. Rev. Biophys. Biomol. Struct. 23, 541–576.

    Article  PubMed  CAS  Google Scholar 

  23. Sinden, R. R. DNA structure and function. San Diego: Academic Press, 1994.

    Google Scholar 

  24. Soyfer, V. N. and Potaman, V. N. Triple-helical nucleic acids. New York: Springer-Verlag, 1996.

    Book  Google Scholar 

  25. Hoogsteen, K. (1963). The crystal and molecular structure of a hydrogen-bonded complex between 1 methylthymine and 9 methyladenine. Acta Cryst. 16, 907–916.

    Article  CAS  Google Scholar 

  26. Lyamichev, V. I., Mirkin, S. M. and Frank-Kamenetskii, M. D. (1987). Structure of (dG)n(dC)n under superhelical stress and acid pH. J. Biomol. Struct. Dynam. 5, 275–282.

    Article  CAS  Google Scholar 

  27. Fox, K. R. (1990). Long (dA)n(dT)n tracts can form intramolecular triplexes under superhelical stress. Nucleic Acids Res. 18, 5387–5391.

    Article  PubMed  CAS  Google Scholar 

  28. Nelson, H. C., Finch, J. T., Luisi, B. F. and Klug, A. (1987). The structure of an oligo(dA) oligo(dT) tract and its biological implications. Nature 330, 221–226.

    Article  PubMed  CAS  Google Scholar 

  29. Fossella, J. A., Kim, Y. J., Shih, H., Richards, E. G. and Fresco, J. R. (1993). Relative specificities in binding of Watson-Crick base pairs by 3rd strand residues in a DNA pyrimidine triplex motif. Nucleic Acids Res. 21, 4511–4515.

    Article  PubMed  CAS  Google Scholar 

  30. Belotserkovskii, B. P., Veselkov, A. G., Filippov, S.A., Dobrynin, V. N., Mirkin, S. M. and Frank-Kamenetskii, M. D. (1990). Formation of intramolecular triplex in homopurine-homopyrimidine mirror repeats with point substitutions. Nucleic Acids Res. 18, 6621–6624.

    Article  PubMed  CAS  Google Scholar 

  31. Macaya, R. F., Gilbert, D.E., Malek, S., Sinsheimer, J. S. and Feigon, J. (1991). Structure and stability of XGC mismatches in the third strand of intramolecular triplexes. Science 254, 270–274.

    Article  PubMed  CAS  Google Scholar 

  32. Mergny, J. L., Sun, J. S., Rougee, M., Montenay-Garestier, T., Barcelo, F., Chomilier, J. and Helene, C. (1991). Sequence specificity in triple-helix formation, experimental and theoretical studies of the effect of mismatches on triplex stability. Biochemistry 30, 9791–9798.

    Article  PubMed  CAS  Google Scholar 

  33. Roberts, R. W. and Crothers, D.M. (1991). Specificity and stringency in DNA triplex formation. Proc. Natl. Acad. Sci. USA 88, 9397–9401.

    Article  PubMed  CAS  Google Scholar 

  34. Singleton, S. F. and Dervan, P. B. (1992). Thermodynamics of oligodeoxyribo-nucleotide-directed triple-helix formation at single DNA sites. J. Am. Chem. Soc. 114, 6957–6965.

    Article  CAS  Google Scholar 

  35. Yoon, K., Hobbs, C. A., Koch, J., Sardaro, M., Kutny, R. and Weis, A. L. (1992). Elucidation of the sequence-specific third-strand recognition of four Watson-Crick base pairs in a pyrimidine triple-helix motif, TAT, CGC, TCG, and GTA. Proc. Natl. Acad. Sci. USA 89, 3840–3844.

    Article  PubMed  CAS  Google Scholar 

  36. Hanvey, J. G., Klysik, J. and Wells, R. D. (1988). Influence of DNA sequence on the formation of non-B right-handed helices in oligopurineoligopyrimidine inserts in plasmids. J. Biol. Chem. 263, 7386–7396.

    PubMed  CAS  Google Scholar 

  37. Hanvey, J. G., Shimizu, M. and Wells, R. D. (1990). Site-specific inhibition of EcoRI restriction/modification enzymes by a DNA triple helix. Nucleic Acids Res. 18, 157–161.

    Article  PubMed  CAS  Google Scholar 

  38. Tang, M.-S., Htun, H., Cheng, Y. and Dahlberg, J. E. (1991). Supression of cylobutane and <6-4> dipyrimidines formation in triple-stranded H-DNA. Biochemistry 30, 7021–7026.

    Article  PubMed  CAS  Google Scholar 

  39. Lyamichev, V.I., Voloshin, O. N., Frank-Kamenetskii, M. D. and Soyfer, V. N. (1991). Photofootprinting of DNA triplexes. Nucleic Acids Res. 19, 1633–1638.

    Article  PubMed  CAS  Google Scholar 

  40. Lyamichev, V. I., Frank-Kamenetskii, M. D. and Soyfer, V. N. (1990). Protection against UV-induced pyrimidine dimerization in DNA by triplex formation. Nature 344, 568–570.

    Article  PubMed  CAS  Google Scholar 

  41. Sklenar, V. and Feigon, J. (1990). Formation of a stable triplex from a single DNA strand. Nature 345, 836–838.

    Article  PubMed  CAS  Google Scholar 

  42. Wang, E., Malek, S. and Feigon, J. (1992). Structure of a G.T.A triplet in an intramolecular DNA triplex. Biochemistry 31, 4838–4846.

    Article  PubMed  CAS  Google Scholar 

  43. Macaya, R., Wang, E., Schultze, P., Sklenar, V. and Feigon, J. (1992). Proton nuclear magnetic resonanse assignments and structural characterization of an intramolecular DNA triplex. J. Mol. Biol. 225, 755–773.

    Article  PubMed  CAS  Google Scholar 

  44. Radhakrishnan, I., Gao, X., de-los-Santos, G., Live, D. and Patel, D. J. (1991). NMR structural studies of intramolecular (Y+)n(R+)n(Y-)n DNA triplexes in solution: imino and amino proton and nitrogen markers of GTA base triple formation. Biochemistry 30, 9022–9030.

    Article  PubMed  CAS  Google Scholar 

  45. Radhakrishnan, I. and Patel, D. J. (1994). Solution structure of a pyrimidine purine pyrimidine DNA triplex containing TAT, C+GC and GTA triples. Structure 2, 17–32.

    Article  PubMed  CAS  Google Scholar 

  46. Radhakrishnan, I. and Patel, D. J. (1994). Solution structure and hydration patterns of a pyrimidine purine pyrimidine DNA triplex containing a novel TCG base-triple. J. Mol. Biol. 241, 600–619.

    Article  PubMed  CAS  Google Scholar 

  47. Feigon, J., Koshlap, K.M. and Smith, F. W. (1995). 1H NMR spectroscopy of DNA triplexes and quadruplexes. Meth. Enzymol. 261, 225–255.

    Article  PubMed  CAS  Google Scholar 

  48. Radhakrishnan, I. and Patel, D. J. (1994). DNA triplexes: solution structures, hydration sites, energetics, interactions, and function. Biochemistry 33, 11405–11416.

    Article  PubMed  CAS  Google Scholar 

  49. Lyamichev, V.I., Mirkin, S. M., Kumarev, V. P., Baranova, L. V., Vologodskii, A. V. and Frank-Kamenetskii, M. D. (1989). Energetics of the B-H transition in supercoiled DNA carrying d(CT)xd(AG)x and d(C)nd(G)n inserts. Nucleic Acids Res. 17, 9417–9423.

    Article  PubMed  CAS  Google Scholar 

  50. Plum, G. E., Park, Y. W., Singleton, S. F., Dervan, P. B. and Breslauer, K. J. (1990). Thermodynamic characterization of the stability and the melting behavior of a DNA triplex: a spectroscopic and calorimetric study. Proc. Natl. Acad. Sci. USA 87, 9436–9440.

    Article  PubMed  CAS  Google Scholar 

  51. Plum, G. E. and Breslauer, K. J. (1995). Thermodynamics of an intramolecular DNA triple helix: a calorimetric and spectroscopic study of the pH and salt dependence of thermally induced structural transitions. J. Mol. Biol. 248, 679–695.

    Article  PubMed  CAS  Google Scholar 

  52. Manzini, G., Xodo, L. E., Gasparotto, D., Quadrifoglio, F., van-der-Marel, G. A. and van-Boom, J. H. (1990). Triple helix formation by oligopurineoligopyrimidine DNA fragments. Electrophoretic and thermodynamic behavior. J. Mol. Biol. 213, 833–843.

    Article  PubMed  CAS  Google Scholar 

  53. Pilch, D.S., Brousseau, R. and Shafer, R. H. (1990). Thermodynamics of triple helix formation: spectrophotometric studies on the d(A)102d(T)10 and d(C+ 3T4C+ 3)d(G3A4G3) d(C3T4C3) triple helices. Nucleic Acids Res. 18, 5743–5750.

    Article  PubMed  CAS  Google Scholar 

  54. Roberts, R. W. and Crothers, D. M. (1996). Prediction of the stability of DNA triplexes. Proc. Natl. Acad. Sci. USA 93, 4320–4325.

    Article  PubMed  CAS  Google Scholar 

  55. Volker, J., Botes, D. P., Lindsey, G. G. and Klump, H. H. (1993). Energetics of a stable intramolecular DNA triple helix formation. J. Mol. Biol. 230, 1278–1290.

    Article  PubMed  CAS  Google Scholar 

  56. Xodo, L. E., Manzini, G. and Quadrifoglio, F. (1990). Spectroscopic and calorimetric investigation on the DNA triplex formed by d(CTCTTCTTTCTTTTCTTTCTTCTC) and d(GAGAAGAAAGA) at acidic pH. Nucleic Acids Res. 18, 3557–3564.

    Article  PubMed  CAS  Google Scholar 

  57. Plum, G. E., Pilch, D.S., Singleton, S. F. and Breslauer, K.J. (1995). Nucleic acid hybridization: triplex stability and energetics. Annu. Rev. Biophys. Struct. Biol. 24, 319–350.

    Article  CAS  Google Scholar 

  58. Bernues, J., Beltran, R., Casasnovas, J. M. and Azorin, F. (1990). DNA-sequence and metal-ion specificity of the formation of *H-DNA. Nucleic Acids Res. 18, 4067–4073.

    Article  PubMed  CAS  Google Scholar 

  59. Beltran, R., Martinez-Balbas, A., Bernues, J., Bowater, R. and Azorin, F. (1993). Characterization of the zinc-induced structural transition to *H-DNA at a d(GACT)22 sequence. J. Mol. Biol. 230, 966–978.

    Article  PubMed  CAS  Google Scholar 

  60. Bernues, J., Beltran, R., Casasnovas, J. M. and Azorin, F. (1989). Structural polymorphism of homopurine-homopyrimidine sequences: the secondary DNA structure adopted by a d(GACT)22 sequence in the presence of zinc ions. EMBO J. 8, 2087–2094.

    PubMed  CAS  Google Scholar 

  61. Dayn, A., Samadashwily, G. M. and Mirkin, S. M. (1992). Intramolecular DNA triplexes: unusual sequence requirements and influence on DNA polymerization. Proc. Natl. Acad. Sci. USA 89, 11406–11410.

    Article  PubMed  CAS  Google Scholar 

  62. Beal, P.A. and Dervan, P. B. (1991). Second structural motif for recognition of DNA by oligonucleotide-directed triple-helix formation. Science 251, 1360–1363.

    Article  PubMed  CAS  Google Scholar 

  63. Beal, P. A. and Dervan, P. B. (1992). The influence of single base triplet changes on the stability of a purpurpyr triple helix determined by affinity cleaving. Nucleic Acids Res. 20, 2773–2776.

    Article  PubMed  CAS  Google Scholar 

  64. Vo, T., Wang, S. and Kool, E. T. (1995). Targeting pyrimidine single strands by triplex formation: structural optimization of binding. Nucleic Acids Res. 23, 2937–2944.

    Article  PubMed  CAS  Google Scholar 

  65. Kohwi, Y. (1989). Cationic metal-specific structures adopted by the poly(dG) region and the direct repeats in the chicken adult βA globin gene promoter. Nucleic Acids Res. 17, 4493–4502.

    Article  PubMed  CAS  Google Scholar 

  66. Malkov, V. A., Voloshin, O. N., Soyfer, V. N. and Frank-Kamenetskii, M. D. (1993). Cation and sequence effects on stability of intermolecular pyrimidine-purine-purine triplex. Nucleic Acids Res. 21, 585–591.

    Article  PubMed  CAS  Google Scholar 

  67. Martinez-Balbas, A. and Azorin, F. (1993). The effect of zinc on the secondary structure of d(GATC)n DNA sequences of different length: a model for the formation *H-DNA. Nucleic Acids Res. 21, 2557–2562.

    Article  PubMed  CAS  Google Scholar 

  68. Potaman, V. N. and Soyfer, V. N. (1994). Divalent metal cations upon coordination to the N7 of purines differentially stabilize the PyPuPu DNA triplex due to unequal hoogsteen-type hydrogen bond enhancement. J. Biomol. Struct. Dynam. 11, 1035–1040.

    Article  CAS  Google Scholar 

  69. Kohwi-Shigematsu, T. and Kohwi, Y. (1991). Detection of triple-helix related structures adopted by poly(dG)-poly(dC) sequences in supercoiled plasmid DNA. Nucleic Acids Res. 19, 4267–4271.

    Article  PubMed  CAS  Google Scholar 

  70. Kohwi, Y. and Kohwi-Shigematsu, T. (1993). Structural polymorphism of homopurine-homopyrimidine sequences at neutral pH. J. Mol. Biol. 231, 1090–1101.

    Article  PubMed  CAS  Google Scholar 

  71. Radhakrishnan, I., de-los-Santos, C. and Patel, D. J. (1991). Nuclear magnetic resonance structural studies of intramolecular purine purine pyrimidine DNA triplexes in solution. Base triple pairing alignments and strand direction. J. Mol. Biol. 221, 1403–1418.

    PubMed  CAS  Google Scholar 

  72. Radhakrishnan, I. and Patel, D. J. (1993). Solution structure of a purine purine pyrimidine DNA triplex containing GGC and TAT triples. Structure 1, 135–152.

    Article  PubMed  CAS  Google Scholar 

  73. Radhakrishnan, I., de los Santos, C. and Patel, D. J. (1993). NMR structural studies of AAT base triple alignments in intramolecular purine purine pyrimidine DNA triplexes in solution. J. Mol. Biol. 234, 188–197.

    Article  PubMed  CAS  Google Scholar 

  74. Radhakrishnan, I. and Patel, D. J. (1994). Hydration sites in purinepurine p pyrimidine and pyrimidine purine pyrimidine DNA triplexes in aqueous solution. Structure 2, 395–405.

    Article  PubMed  CAS  Google Scholar 

  75. Krasilnikov, A. S., Panyutin, I. G., Samadashwily, G. M., Cox, R., Lazurkin, Y. S. and Mirkin, S. M. (1997). Mechanisms of triplex-caused polymerization arrest. Nucleic Acids Res. 25, 1339–1346.

    Article  PubMed  CAS  Google Scholar 

  76. Scaria, P. V., Will, S., Levenson, C. and Shafer, R. H. (1995). Physicochemical studies of the d(G3T4G3)*d(G3A4G4) d(C3T4C3) triple helix. J. Biol. Chem. 270, 7295–7303.

    Article  PubMed  CAS  Google Scholar 

  77. He, Y., Scaria, P. V. and Shafer, R. H. (1997). Studies on formation and stability of the d[G(AG)5]*d[G(AG)5]d[C(TC)5] and d[G(TG)5]*d[G(AG)5] d[C(TC)5] triplex helices. Biopolymers 41, 431–441.

    Article  PubMed  CAS  Google Scholar 

  78. Scaria, P. V. and Shafer, R. H. (1996). Calorimetric analysis of triple helices targeted to the d(G3A4G3) d(C3T4C3) duplex. Biochemistry 35, 10985–10994.

    Article  PubMed  CAS  Google Scholar 

  79. Pilch, D. S., Levenson, C. and Shafer, R. H. (1991). Structure, stability, and thermodynamics of a short intermolecular purine-purine-pyrimidine triple helix. Biochemistry 30, 6081–6088.

    Article  PubMed  CAS  Google Scholar 

  80. Panyutin, I. G., Kovalsky, O. I. and Budowsky, E. I. (1989). Magnesium-dependent supercoiling-induced transition in (dG)n (dC)n stretches and formation of a new G-structure by (dG)n strand. Nucleic Acids Res. 17, 8257–8271.

    Article  PubMed  CAS  Google Scholar 

  81. Panyutin, I. G. and Wells, R. D. (1992). Nodule DNA in the (GA)37(CT)37 insert in superhelical plasmids. J. Biol. Chem. 267, 5495–5501.

    PubMed  CAS  Google Scholar 

  82. Hampel, K. J., Ashley, C. and Lee, J. S. (1994). Kilobase-range communication between polypurine polypyrimidine tracts in linear plasmids mediated by triplex formation — a braided knot between two linear duplexes. Biochemistry 33, 5674–5681.

    Article  PubMed  CAS  Google Scholar 

  83. Lee, J. S., Ashley, C., Hampel, K.J., Bradley, R. and Scraba, D. G. (1995). A stable interaction between separated pyrimidine.purine tracts in circular DNA. J. Mol. Biol. 252, 283–288.

    Article  PubMed  CAS  Google Scholar 

  84. Christophe, D. (1988). H-form DNA and the hairpin-triplex model [letter]. Nature 333, 214.

    Article  PubMed  CAS  Google Scholar 

  85. Htun, H. and Dahlberg, J. E. (1989). Topology and formation of triple-stranded H-DNA. Science 243, 1571–1576.

    Article  PubMed  CAS  Google Scholar 

  86. Kang, S., Wohlrab, F. and Wells, R. D. (1992). Metal ions cause the isomerization of certain intramolecular triplexes. J. Biol. Chem. 267, 1259–1264.

    PubMed  CAS  Google Scholar 

  87. Kang, S. and Wells, R. D. (1992). Central non-pur.pyr sequences in oligo (dGdC) tracts and metal ions influence the formation of intramolecular DNA triplex isomers. J. Biol. Chem. 267, 20887–20891.

    PubMed  CAS  Google Scholar 

  88. Shimizu, M., Kubo, K., Matsumoto, U. and Shindo, H. (1994). The loop sequence plays crucial roles for isomerization of intramolecular DNA triplexes in supercoiled plasmids. J. Mol. Biol. 235, 185–197.

    Article  PubMed  CAS  Google Scholar 

  89. Roberts, R. W. and Crothers, D. M. (1996). Kinetic discrimination in the folding of intramolecular triple helices. J. Mol. Biol. 260, 135–146.

    Article  PubMed  CAS  Google Scholar 

  90. Jayasena, S. D. and Johnston, B. H. (1992). Intramolecular triple-helix formation at (PunPyn) (PunPyn) tracts: recognition of alternate strands via PuPuPy and Py PuPy base triplets. Biochemistry 31, 320–327.

    Article  PubMed  CAS  Google Scholar 

  91. Jayasena, S.D. and Johnston, B. H. (1993). Sequence limitations of triple helix formation by alternate-strand recognition. Biochemistry 32, 2800–2807.

    Article  PubMed  CAS  Google Scholar 

  92. Lapidot, A., Baran, N. and Manor, H. (1989). (dT-dC)n and (dG-dA)n tracts arrest single stranded DNA replication in vitro. Nucleic Acids Res. 17, 883–900.

    Article  PubMed  CAS  Google Scholar 

  93. Baran, N., Lapidot, A. and Manor, H. (1991). Formation of DNA triplexes accounts for arrests of DNA synthesis at d(TC)n and d(GA)n tracts. Proc. Natl. Acad. Sci. USA 88, 507–511.

    Article  PubMed  CAS  Google Scholar 

  94. Mikhailov, V. S. and Bogenhagen, D. F. (1996). Termination within oligo(dT) tracts in template DNA by DNA polymerase gamma occurs with formation of a DNA triplex structure and is relieved by mitochondrial single-stranded DNA-binding protein. J. Biol. Chem. 271, 30774–30780.

    Article  PubMed  CAS  Google Scholar 

  95. Samadashwily, G. M., Dayn, A. and Mirkin, S. M. (1993). Suicidal nucleotide sequences for DNA polymerization. EMBO J. 12, 4975–4983.

    PubMed  CAS  Google Scholar 

  96. Reaban, M. E. and Griffin, J. A. (1990). Induction of RNA-stabilized DNA conformers by transcription of an immuniglobulin switch region. Nature 348, 342–344.

    Article  PubMed  CAS  Google Scholar 

  97. Reaban, M. E., Lebowitz, J. and Griffin, J. A. (1994). Transciption induces the formation of a stable RNADNA hybrid in the immunoglobulin a switch region. J. Biol. Chem. 269, 21850–21857.

    PubMed  CAS  Google Scholar 

  98. Grabczyk, E. and Fishman, M. C. (1995). Along purine-pyrimidine homopolymer acts as a transcriptional diode. J. Biol. Chem. 270, 1791–1797.

    Article  PubMed  CAS  Google Scholar 

  99. Kiyama, R. and Oishi, M. (1996). In vitro transcription of a poly(dA) poly(dT)-containing sequence is inhibited by interaction between the template and its transcripts. Nucleic Acids Res. 24, 4577–4583.

    Article  PubMed  CAS  Google Scholar 

  100. Beasty, A.M. and Behe, M. J. (1988). An oligopurine sequence bias occurs in eukaryotic viruses. Nucleic Acids Res. 16, 1517–1528.

    Article  PubMed  CAS  Google Scholar 

  101. Manor, H., Sridhara-Rao, B. and Martin, R. G. (1988). Abundance and degree of dispersion of genomic d(GA)nd(TC)n sequences. J. Mol. Evol. 27, 96–101.

    Article  PubMed  CAS  Google Scholar 

  102. Tripathi, J. and Brahmachari, S. K. (1991). Distribution of simple repetitive (TG/CA)n and (CT/AG)n sequences in human and rodent genomes. J. Biomol. Struct. Dynam. 9, 387–397.

    Article  CAS  Google Scholar 

  103. Schroth, G. P. and Ho, P. S. (1995). Occurrence of potential cruciform and H-DNA forming sequences in genomic DNA. Nucleic Acids Res. 23, 1977–1983.

    Article  PubMed  CAS  Google Scholar 

  104. Cox, R. and Mirkin, S. M. (1997). Characteristic enrichment of DNA repeats in different genomes. Proc. Natl. Acad. Sci. USA 94, 5237–5242.

    Article  PubMed  CAS  Google Scholar 

  105. Ussery, D.W. and Sinden, R. R. (1993). Environmental influences on the in vivo level of intramolecular triplex DNA in Escherichia coli. Biochemistry 32, 6206–6213.

    Article  PubMed  CAS  Google Scholar 

  106. Karlovsky, P., Pecinka, P., Vojtiskova, M., Makaturova, E. and Palecek, E. (1990). Protonated triplex DNA in E. coli cells as detected by chemical probing. FEBS Lett. 274, 39–42.

    Article  PubMed  CAS  Google Scholar 

  107. Kohwi, Y., Malkhosyan, S. R. and Kohwi-Shigematsu, T. (1992). Intramolecular dGdCdC triplex detected in Escherichia coli cells. J. Mol. Biol. 223, 817–822.

    Article  PubMed  CAS  Google Scholar 

  108. Wang, J. C. (1996). DNA topoisomerases. Annu. Rev. Biochem. 65, 635–692.

    Article  PubMed  CAS  Google Scholar 

  109. Kohwi, Y. and Panchenko, Y. (1993). Transcription-dependent recombination induced by triple-helix formation. Genes Dev. 7, 1766–1778.

    Article  PubMed  CAS  Google Scholar 

  110. Burkholder, G. D., Latimer, L. J. and Lee, J. S. (1988). Immunofluorescent staining of mammalian nuclei and chromosomes with a monoclonal antibody to triplex DNA. Chromosoma 97, 185–192.

    Article  PubMed  CAS  Google Scholar 

  111. Lee, J. S., Latimer, L. J., Haug, B. L., Pulleyblank, D.E., Skinner, D.M. and Burkholder, G. D. (1989). Triplex DNA in plasmids and chromosomes. Gene 82, 191–199.

    Article  PubMed  CAS  Google Scholar 

  112. Agazie, Y. M., Lee, J. S. and Burkholder, G. D. (1994). Characterization of a new monoclonal antibody to tripler DNA and immunofluorescent staining of mammalian chromosomes. J. Biol. Chem. 269, 7019–7023.

    PubMed  CAS  Google Scholar 

  113. Agazie, Y. M., Burkholder, G. D. and Lee, J. S. (1996). Triplex DNA in the nucleus: direct binding of triplex-specific antibodies and their effect on transcription, replication and cell growth. Biochem. J. 316, 461–466.

    PubMed  CAS  Google Scholar 

  114. Gilmour, D. S., Thomas, G. H. and Elgin, S. C. R. (1989). Drosophila nuclear proteins bind to regions of alternaring C and T residues in gene promoters. Science 245, 1487–1490.

    Article  PubMed  CAS  Google Scholar 

  115. Xu, G. and Goodridge, A. G. (1996). Characterization of a polypyrimidine/ polypurine tract in the promoter of the gene for chicken malic enzyme. J. Biol. Chem. 271, 16008–16019.

    Article  PubMed  CAS  Google Scholar 

  116. Pestov, D. G., Dayn, A., Siyanova, E., George, D. L. and Mirkin, S. M. (1991). H-DNA and Z-DNA in the mouse c-Ki-ras promoter. Nucleic Acids Res. 19, 6527–6532.

    Article  PubMed  CAS  Google Scholar 

  117. Bacolla, A. and Wu, F. Y.-H. (1991). Mung bean nucelase cleavage pattern at a polypurine-polypyrimidine sequence upstream from the mouse metallothionein gene. Nucleic Acids Res. 19, 1639–1647.

    Article  PubMed  CAS  Google Scholar 

  118. Lafyatis, R., Denhez, F., Williams, T., Sporn, M. and Roberts, A. (1991). Sequence specific protein binding to and activation of the TGF-β3 promoter through a repeated TCCC motif. Nucleic Acids Res. 19, 6419–6425.

    Article  PubMed  CAS  Google Scholar 

  119. Johnson, A.C., Jinno, Y. and Merlino, G. T. (1988). Modulation of epidermal growth factor receptor proto-oncogene transcription by a promoter site sensitive to S1 nuclease. Mol. Cell. Biol. 8, 4174–4184.

    PubMed  CAS  Google Scholar 

  120. Ulrich, M. J., Gray, W. J. and Ley, T. J. (1992). An intramolecular DNA triplex is disrupted by point mutations associated with hereditary persistence of fetal hemoglobin. J. Biol. Chem. 267, 18649–18658.

    PubMed  CAS  Google Scholar 

  121. Mavrothalassitis, G. L., Watson, D. K. and Papas, T. S. (1990). Molecular and functional characterization of the promoter of ETS2, the human c-ets-2 gene. Proc. Natl. Acad. Sci. USA 87, 1047–1051

    Article  PubMed  CAS  Google Scholar 

  122. Nelson, K. L., Becker, N. A., Pahwa, G. S., Hollingsworth, M. A. and Maher, L. J. (1996). Potential for H-DNA in the human MUC1 mucin gene promoter. J. Biol. Chem. 271, 18061–18067.

    Article  PubMed  CAS  Google Scholar 

  123. Potaman, V. N., Ussery, D. W. and Sinden, R. H. (1996). Formation of combined H-DNA/open TATA box structure in the promoter sequence of the human Na,K-ATPase α2 gene. J. Biol. Chem. 271, 13441–13447.

    Article  PubMed  CAS  Google Scholar 

  124. Raghu, G., Tevosian, S., Anant, S., Subramanian, K., George, D. L. and Mirkin, S. M. (1994). Transcriptional activity of the homopurine-homopyrimidine repeat of the c-Ki-ras promoter is independent of its H-forming potential. Nucleic Acids Res. 22, 3271–3279.

    Article  PubMed  CAS  Google Scholar 

  125. Tewari, D. S., Cook, D. M. and Traub, R. (1990). Characterization of the promoter region and 3′ end of the human insulin receptor gene. J. Biol. Chem. 264, 16238–16245.

    Google Scholar 

  126. Becker, N. A. and Maher, L. J. (1998). Characterization of a polypurine/polypyrimidine sequence upstream of the mouse metallothionein-I gene. Nucleic Acids Res. 26, 1951–1958.

    Article  PubMed  CAS  Google Scholar 

  127. Glaser, R. L., Thomas, G. H., Siegfried, E., Elgin, S. C. and Lis, J. T. (1990). Optimal heat-induced expression of the Drosophila hsp26 gene requires a promoter sequence containing (CT)n (GA)n repeats. J. Mol. Biol. 211, 751–761.

    Article  PubMed  CAS  Google Scholar 

  128. Clark, S. P., Lewis, C. D. and Felsenfeld, G. (1990). Properties of BGP1 a poly(dG)-binding protein from chicken erythrocytes. Nucleic Acids Res. 18, 5119–5126.

    Article  PubMed  CAS  Google Scholar 

  129. Kolluri, R., Torrey, T. A. and Kinniburgh, A. J. (1992). A CT promoter element binding protein: definition of a double-strand and a novel single-strand DNA binding motif. Nucleic Acids Res. 20, 111–116.

    Article  PubMed  CAS  Google Scholar 

  130. Bossone, S.A., Asselin, C., Patel, A. J. and Marcu, K. B. (1992). MAZ, a zinc finger protein, binds to c-MYC and C2 gene sequences regulating transcriptional initiation and termination. Proc. Natl. Acad. Sci. USA 89, 7452–7456.

    Article  PubMed  CAS  Google Scholar 

  131. Postel, E.H., Berberich, S. J., Flint, S. J. and Ferrone, C. A. (1993). Human c-myc transcription factor PuF identified as nm23-H2 nucleoside diphosphate kinase, a candidate supressor of tumor metastasis. Science 261, 478–483.

    Article  PubMed  CAS  Google Scholar 

  132. Brunei, F., Alzari, P.M., Ferrara, P. and Zakin, M. M. (1991). Cloning and sequencing of PYBP, a pyrimidine-rich specific single strand DNA-binding protein. Nucleic Acids Res. 19, 5237–5245.

    Article  Google Scholar 

  133. Kennedy, G. C. and Rattner, J. B. (1992). Pur-1 P a zinc-finger protein that binds to purine-rich sequences, transactivates an insulin promoter in heterologous cells. Proc. Natl. Acad. Sci. USA 89, 11498–11502.

    Article  PubMed  CAS  Google Scholar 

  134. Horwitz, E. M., Maloney, K. A. and Ley, T. J. (1994). A human protein containing a “cold shock” domain binds specifically to H-DNA upstream from the human gamma-globin genes. J. Biol. Chem. 269, 14130–14139.

    PubMed  CAS  Google Scholar 

  135. Kiyama, R. and Camerini-Otero, D. (1991). A triplex DNA-binding protein from human cells: purification and characterization. Proc. Natl. Acad. Sci. USA 88, 10450–10454.

    Article  PubMed  CAS  Google Scholar 

  136. Guieysse, A.-L., Praseuth, D. and Helene, C. (1997). Identification of a triplex DNA-binding protein from human cells. J. Mol. Biol. 267, 289–298.

    Article  PubMed  CAS  Google Scholar 

  137. Musso, M., Nelson, L. D. and Van Dyke, M. W. (1998). Characterization of purine-motif triplex DNA-binding proteins in HeLa extracts. Biochemistry 37, 3086–3095.

    Article  PubMed  CAS  Google Scholar 

  138. Bacolla, A., Ulrich, M. J., Larson, J. E., Ley, T. J. and Wells, R. D. (1995). An intramolecular triplex in the human gamma-globin 5′-flanking region is altered by point mutations associated with hereditary persistence of fetal hemoglobin. J. Biol. Chem. 270, 24556–24563.

    Article  PubMed  CAS  Google Scholar 

  139. Chen, S., Supakar, P.C., Vellanoweth, R. L., Song, C. S., Chatterjee, B. and Roy, A. K. (1997). Functional role of a conformationally flexible homopurine/homopyrimidine domain of the androgen receptor gene promoter interacting with Sp1 and a pyrimidine single strand DNA-binding protein. Mol. Endocrinol. 11, 3–15.

    Article  PubMed  CAS  Google Scholar 

  140. Sarkar, P.S. and Brahmachari, S. K. (1992). Intramolecular triplex potential sequence within a gene down regulates its expression in vivo. Nucleic Acids Res. 20, 5713–5718.

    Article  PubMed  CAS  Google Scholar 

  141. Brahmachari, S. K., Sarkar, P. S., Raghavam, S., Narayan, M. and Maiti, A. K. (1997). Polypurine/polypyrimidine sequences as cis-acting transcriptional regulators. Gene 190, 17–26.

    Article  PubMed  CAS  Google Scholar 

  142. Krasilnikova, M. M., Samadashwily, G. M., Krasilnikov, A. S. and Mirkin, S. M. (1998). Transcription through a simple DNA repeat blocks replication elongation. EMBO J. 17, 5095–5102.

    Article  PubMed  CAS  Google Scholar 

  143. Portes-Sentis, S., Sergeant, A. and Gruffat, H. (1997). A particular DNA structure is required for the function of a cis-acting component of the Epstein-Barr virus OriLyt origin of replication. Nucleic Acids Res. 25, 1347–1354.

    Article  PubMed  CAS  Google Scholar 

  144. Brinton, B. T., Caddie, M. S. and Heintz, N. H. (1991). Position and orientation-dependent effects of a eukaryotic Z-triplex DNA motif on episomal DNA replication in COS-7 cells. J. Biol. Chem. 266, 5153–5161.

    PubMed  CAS  Google Scholar 

  145. Rao, S., Manor, H. and Martin, R. G. (1988). Pausing in simian virus 40 DNA replication by a sequence containing (dG-dA)27 (dT-dC)27. Nucleic Acids Res. 16, 8077–8094.

    Article  PubMed  CAS  Google Scholar 

  146. Rao, B. S. (1994). Pausing of simian virus 40 DNA replication fork movement in vivo by (dG-dA)n(dT-dC)n tracts. Gene 140, 233–237.

    Article  PubMed  CAS  Google Scholar 

  147. Espinas, M. L., Jimenes-Garcia, E., Martinez-Balbas, A. and Azorin, F. (1996). Formation of triple-stranded DNA at d(GATC)n sequences prevents nucleosome assembly and is hindered by nucleosomes. J. Biol. Chem. 271, 31807–31812.

    Article  PubMed  CAS  Google Scholar 

  148. Gacy, A. M., Goellner, G. M., Spiro, C., Chen, X., Gupta, G., Bradbury, E. M., Dyer, R. B., Mikesell, M. J., Yao, J. Z., Johnson, A. J., Richter, A., Melancon, S. B. and McMurray, C. T. (1998). GAA instability in Friedreich’s ataxia shares a common, DNA-directed and intraallelic mechanism with other trinucleotide diseases. Molecular Cell 1, 583–593.

    Article  PubMed  CAS  Google Scholar 

  149. Ashley, C., Jr. and Warren, S. T. (1995). Trinucleotide repeat expansion and human disease. Annu. Rev. Genet. 29, 703–728.

    Article  PubMed  CAS  Google Scholar 

  150. Wells, R. D. (1996). Molecular basis of genetic instability of triplet repeats. J. Biol. Chem. 271, 2875–2878.

    PubMed  CAS  Google Scholar 

  151. McMurray, C. T. (1995). Mechanisms of DNA expansion. Chromosoma 104, 2–13.

    PubMed  CAS  Google Scholar 

  152. Samadashwily, G. M., Raca, G. and Mirkin, S. M. (1997). Trinucleotide repeats affect DNA replication in vivo. Nature Genet. 17, 298–304.

    Article  PubMed  CAS  Google Scholar 

  153. Campuzano, V., Montermini, L., Molto, M. D., Pianese, L., Cossee, M., Cavalcanti, F., Monros, E., Rodius, F., Duclos, F., Monticelli, A., et al. (1996). Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271, 1423–1427.

    Article  PubMed  CAS  Google Scholar 

  154. Rooney, S. M. and Moore, P.D. (1995). Antiparallel, intramolecular triplex DNA stimulates homologous recombination in human cells. Proc. Natl. Acad. Sci. USA 92, 2141–2144.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mirkin, S.M. (1999). Structure and Biology of H DNA. In: Malvy, C., Harel-Bellan, A., Pritchard, L.L. (eds) Triple Helix Forming Oligonucleotides. Perspectives in Antisense Science, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5177-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5177-5_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7358-2

  • Online ISBN: 978-1-4615-5177-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics