Skip to main content

Scanning Probes for Information Storage and Retrieval

  • Chapter
Book cover Bringing Scanning Probe Microscopy up to Speed

Part of the book series: Microsystems ((MICT,volume 3))

  • 101 Accesses

Abstract

The role of the scanning probes for digital storage has yet to be defined, but we can discuss some significant steps that have been taken in this field. We will describe the work on writing bits on magnetic media, although there are other strategies for storing data with scanning probes. Mamin2 has worked out a system where he creates small indents in PMMA for storing a single bit. Barrett3 has employed the probe to store and read bits as trapped charge in films of silicon nitride. At Canon, Takimoto4 has used the STM to store bits by changing the conductivity of the medium with a current pulse on the tip. Hosoka5 has used small gold clusters deposited by field desorption from the probe tip.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Part of this chapter is reprinted with permission from Manalis et al., “Submicron studies of recording media using thin-film magnetic scanning probes,” Applied Physics Letters 66, 2585–2587 (1995). Copyright 1995 American Institute of Physics.

    Google Scholar 

  2. H.J. Mamin and D. Rugar, “Thermomechanical writing with an atomic force microscope tip,” Appl, Phys. Lett. 61, 1003–1005 (1992)

    Article  CAS  Google Scholar 

  3. R.C. Barrett and C.F. Quate, “Charge storage in a nitride-oxide-silicon medium by scanning capacitance microscopy,” J. Appl, Phys. 70, 2725–2733 (1991)

    Article  CAS  Google Scholar 

  4. K. Takimoto, H. Kawade, E. Kishi, K. Yano, K. Sakai, K. Hatanaka, K. Eguchi, and T. Nakagiri, “Switching and memory phenomena in Langmuir-Blodgett films with scanning tunneling microscope,” Appl, Phys. Lett. 61, 3032–3034 (1992)

    Article  CAS  Google Scholar 

  5. S.Hosaka, A. Kikukura, H. Koyanagi, T. Shintani, M. Miyamoto, K. Nakamura, and K. Etoh,SPM-based data storage for ultrahigh density recording Nanotechnology 8, A58–A62 (1997).

    Article  CAS  Google Scholar 

  6. P. Grütter, H.J. Mamin, and D. Rugar, Scanning Probe Microscopy II (1991); P. Grütter, MSA Bulletin 24, 416 (1994)

    Google Scholar 

  7. D. Rugar, H.J. Mamin, P. Guethner, S.E. Lambert, J.E. Stern, I. McFadyen, and T. Yogi, J. Appl. Phys. 68, 1169 (1990)

    Google Scholar 

  8. J. Moreland and P. Price, Appl. Phys. Lett. 57, 310–312 (1990)

    Google Scholar 

  9. T. Ohkubo, J. Kishigami, K. Yanagisawa, and R. Kaneko, IEEE Transactions on Magnetics 6, 5286 (1991); and IEEE Trans. J. on Mag. in Jap., 8, 245 (1993)

    Google Scholar 

  10. T. Goddenhenrich, U. Hartmann, and C. Heiden, Ultramicroscopy 42, 256 (1992)

    Google Scholar 

  11. K. Babcock, M. Dugas, V. Elings, and S. Loper, IEEE Transactions on Magnetics, to appear.

    Google Scholar 

  12. P. Bryant, S. Schultz, and D.R. Fredkin, J. Appl. Phys. 69, 5877 (1991)

    Google Scholar 

  13. C.-J. Lin, J.C. Suits, and R.H. Geiss, Appl. Phys. 63, 3825 (1988)

    Google Scholar 

  14. M. Mansipur, R. Giles, and G. Patterson, J. Appl. Phys. 69, 4844 (1991)

    Google Scholar 

  15. K.O–Grady, T. Thomson, J.J. Greaves, and G. Bayreuther, J. Appl. Phys. 75, 6849 (1994)

    Google Scholar 

  16. MultiMode, TappingMode, and LiftMode are trademarks of Digital Instruments. TappingMode and LiftMode, V. Elings and J. Gurley, U.S. Patent Nos. 5,266, 801 and 5,308,974, Digital Instruments, Santa Barbara, CA.

    Google Scholar 

  17. Measured via vibrating sample magnetometry; 3M Center, St. Paul, MN.

    Google Scholar 

  18. Measured via polar Kerr effect; Censtor Corp2, San Jose, CA. This technique averages the response of the surface layer over an area ~1 mm.

    Google Scholar 

  19. This is consistent with previous work (Ref. 6) which found a 15% variation in imaging sensitivity between tips.

    Google Scholar 

  20. H.-P.D. Shieh and M.H. Kryder, IEEE Trans. Mag. 24, 2464 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Minne, S.C., Manalis, S.R., Quate, C.F. (1999). Scanning Probes for Information Storage and Retrieval. In: Bringing Scanning Probe Microscopy up to Speed. Microsystems, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5167-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5167-6_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7353-7

  • Online ISBN: 978-1-4615-5167-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics