Skip to main content

Part of the book series: Electronic Materials Series ((EMAT,volume 5))

Abstract

A large amount of both theoretical and experimental works has been published concerning the resonant tunneling structure (RTD) leading to a broad range of electrical [1, 2] as well as optical [3, 4] applications. Photoluminescence (PL) characterization of the resonant-tunneling light-emitting diode (RTLED) consists of mainly the recombination of electrons and holes that each tunnel from the opposite contact layers into the central RTD active layer. If the two contact layers are both n +-type, the electrons are majority carriers and holes are photocreated minority carriers (if the contacts are p +-type, the roles of electrons and holes are exchanged) [5]; if one contact is n +-type and the other p +-type, both electrons and holes are majority carriers [6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. P. Sun, R. K. Mains, W. L. Chen, J. R. East, and G. I. Haddad, “C-V and I-V characteristics of quantum well varactors”, J. Appl. Phys. vol.76, p.2340–6, 1992.

    Article  Google Scholar 

  2. F. Capasso, S. Sen, F. Beltram, L. M. Lunardi, A. S. Vengurlekar, P. R. Smith, N. J. Shah, R. J. Malik, and A. Y. Cho, “Quantum functional devices: resonant-tunneling transistors, circuits with reduced complexity, and multiple valued logic”, IEEE Trans. Electron. Devices, vol.36, p.2065–82, 1989.

    Article  Google Scholar 

  3. P. E. England, J. E. Golub, L. T. Florez, and J. P. Harbison, “Optical switching in a resonant tunneling structure”, Appl. Phys. Lett. vol.58, p.887–9, 1991.

    Article  CAS  Google Scholar 

  4. C. R. H. White, M. S. Skolnick, L. Eaves, and M. L. Leadbeater, “Electro-luminescence and impact ionization phenomena in a double-barrier resonant tunneling structure”, Appl. Phys. Lett. vol.58, p. 1164–6, 1991.

    Article  CAS  Google Scholar 

  5. C. Van. Hoof and G. Borghs, and E. Goovaerts, “Optical detection of light-and heavy-hole resonant tunneling in p-type resonant tunneling structures”, Appl. Phys. Lett. vol.59, p.2139–41, 1991.

    Article  Google Scholar 

  6. C. Van Hoof, J. Genoe, R. Mertens, G. Borghs, and E. Goovaerts, “Electroluminescence from bipolar resonant tunneling diodes”, Appl. Phys. Lett. vol.60, p.77–9, 1992.

    Article  Google Scholar 

  7. B. Y. Tsaur, C. K. Chen, and S. A. Marino, “Long wavelength GexSi1-x /Si heterojunction infrared detectors and 400*400 element image arrays”, IEEE Electron Device Letters, vol.12, p.293–6, 1991.

    Article  CAS  Google Scholar 

  8. T. L. Lin, A. Ksendzov, S. M. Dejewski, E. W. Jones, R. W. Fathauer, T. N. Krabach, and J. Maserjian, “SiGe/Si heterojunction internal photoemission long-wavelength infrared detectors fabricated by molecular beam epitaxy”, IEEE Transactions on Electron Devices, vol.38, p. 1141–4, 1991.

    Article  CAS  Google Scholar 

  9. C. G. Van de Walle and R. M. Martin, “Theoretical calculations of heterojunction discontinuities in the Si/Ge system”, Phys. Rev. vol.B34, p.5621–34, 1986.

    Google Scholar 

  10. S. C. Jain and W. Hayes, “Structure, properties and applications of GexSi1-x strained layers and superlattices”, Semiconductor Science and Technology, vol.6, p.547–76, 1991.

    Article  CAS  Google Scholar 

  11. J. C. Bean, “Silicon-based semiconductor heterostructures: column IV bandgap engineering”, Proceedings of the IEEE, vol.80, p.571–81, 1992.

    Article  CAS  Google Scholar 

  12. S. C. Jain, J. Poortmans, J. Nijs, P. Van Mieghem, R. P. Mertens, and R. Van Overstraeten, “Band offsets in heavily doped p-type GeSi/Si(100) strained layers: applications to design of long-wavelength infrared (LWIR) detectors”, Microelectronic Engineering, vol. 19, p.439–42, 1992.

    Article  CAS  Google Scholar 

  13. S. C. Jain and D.J. Roulston, “A simple expression for band gap narrowing (BGN) in heavily doped Si, Ge, GaAs and GexSi1-x strained layers”, Solid-State Electron, vol.34, p.453–65, 1991.

    Article  CAS  Google Scholar 

  14. K. Hess, Advanced Theory of Semiconductor Devices, (Prentice Hall 1988), pp 163–171.

    Google Scholar 

  15. J. Wilson and J. F. B. Hawkers, Optoelectronics an Introduction, (Prentice-Hall 1983).

    Google Scholar 

  16. B. F. Levine, K. K. Choi, C. G. Bethea, J. Walker, and R. J. Malik, “New 10 µm infrared detector using intersubband absorption in resonant tunneling GaAlAs superlattices”, Appl. Phys. Lett. vol.50, p.1092–4, 1987;

    Article  CAS  Google Scholar 

  17. B. F. Levine, “Quantum-well infrared photodetectors”, J. Appl. Phys. vol.74, p.Rl–81, 1993.

    Article  Google Scholar 

  18. S. C. Shen, “Comparison and competition between MCT and QW structure material for use in IR detectors”, Microelectronics Journal, vol.25, p.713–39, 1994.

    Article  CAS  Google Scholar 

  19. L. J. Kozlowski, G. M. Williams, G. J. Sullivan, C. W. Farley, R. J. Anderson, J. Chen, D. T. Cheung, W. E. Tennant, and R. E. DeWames, “LWIR 128*128 GaAs/AlGaAs multiple quantum well hybrid focal plane array”, IEEE Transactions on Electron Devices, vol.38, p. 1124–30, 1991.

    Article  CAS  Google Scholar 

  20. S. D. Gunapala, J. K. Liu, M. Sundaram, S. V. Bandara, C. A. Shott, T. Hoelter, P. D. Maker, and R. E. Muller, “Long wavelength 256*256 QWIP hand held camera”, Proceedings of SPIE, vol.2746, p.124–33, 1996.

    Article  CAS  Google Scholar 

  21. Semiconductor Quantum Wells and Superlattices for Long- Wavelength Infrared Detectors, ed. M. O. Manasreh, (Artech House, Boston, 1993).

    Google Scholar 

  22. W. Lu, H. J. Ou, M. H. Chen, X. L. Huang, S. C. Shen, R. H. Gu, and L. B. Ye, “Application of GaAs/GaAlAs multiple-quantum well infrared detector array in the infrared imaging camera”, International J Infrared and Millimeter Waves, vol.15, p.137–44, 1994.

    Article  CAS  Google Scholar 

  23. L. J. Kozlowski, J. M. Arias, and W. E. Tennant, “Experimental comparison of staring IR sensor technologies including PV HgCdTe, PV InGaAs, and quantum well GaAs/AlGaAs”, Proceedings of the SPIE, the International Society for Optical Engineering, vol.2373, p.354–60, 1995.

    Article  CAS  Google Scholar 

  24. J. Y. Andersson and L. Lundqvist, “Grating coupled quantum well infrared detectors: theory and performance”, J. Appl. Phys. vol.71, p.3600–10, 1992.

    Article  CAS  Google Scholar 

  25. D. Pan, J. M. Li, Y. P. Li and M. Y. Kong, “Long period two-dimensional gratings for 8–12 µm quantum well infrared photodetectors”, J. Appl. Phys. vol.80, p.7069–71, 1996

    Google Scholar 

  26. J. Y. Andersson and L. Lundqvist, “Near-unity quantum efficiency of Al-GaAs/GaAs quantum well infrared detectors using a waveguide with a doubly periodic grating coupler”, Appl. Phys. Lett. vol.59, p.857–9, 1991;

    Article  CAS  Google Scholar 

  27. J. Y. Andersson, L. Lundqvist and Z. F. Paska, “Quantum efficiency enhancement of AlGaAs/GaAs quantum well infrared detectors using a waveguide with a grating coupler”, Appl. Phys. Lett. vol.58, p.2264–6, 1991;

    Article  CAS  Google Scholar 

  28. J. Y. Andersson, L. Lundqvist, Z. F. Paska, J. Borglind and D. Haga, “Efficiency of grating coupled AlGaAs/GaAs quantum well infrared detectors”, Appl. Phys. Lett. vol.63, p.3361–3, 1993.

    Article  Google Scholar 

  29. K. W. Goossen, S. A. Lyon, and K. Alavi, “Grating enhancement of quantum well detector response”, Appl. Phys. Lett. vol.53, p.1027–9, 1988;

    Article  Google Scholar 

  30. K. W. Goossen, and S. A. Lyon, “Performance aspects of a quantum well detector”, J. Appl. Phys. vol.63, p.5149–53, 1988;

    Article  Google Scholar 

  31. L. S. Yu, S. S. Li, Y. H. Wang and Y. C. Kao, “A study of the coupled efficiency versus grating periodicity in a normal incident GaAs/AlGaAs multi-quantum-well infrared detector”, J. Appl. Phys. vol.72, p.2105–9, 1992.

    Article  CAS  Google Scholar 

  32. W. Xu, Y. Fu, and M. Willander, “Oscillator strength of intersubband transition in n-type AlAs/GaAlAs quantum well for the normal incident absorption”, J. Infrared Millim. Waves, vol.16, p.86–92, 1997.

    CAS  Google Scholar 

  33. K. Kishino and S. Arai, Chapter 11 Integrated lasers, Handbook of Semiconductor Lasers and Photonic integrated Circuits, (Chapman & Hall London 1994), p.350.

    Google Scholar 

  34. For example, see J. C. Stover, Optical Scattering: Measurement and Analysis, (McGram-Hill New York 1990), p.51;

    Google Scholar 

  35. J. Cowley, Diffraction Physics, (Elsevier Amsterdam 1995), p. 11.

    Google Scholar 

  36. M. S. Ünlü, S. Strite, “Resonant cavity enhanced photonic devices”, J. Appl. Phys. vol.78, p.607–39, 1995.

    Article  Google Scholar 

  37. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-phonon mode splitting in a semiconductor quantum microcavity”, Phys. Rev. Lett. vol.69, p.3314–17, 1992.

    Article  CAS  Google Scholar 

  38. R. Houdre, R. P. Stanley, U. Oesterle, M. Ilegems, and C. Weisbuch, “Room temperature cavity polaritons in a semiconductor microcavity”, Phys. Rev. vol.B49, p. 16761–4, 1994.

    Google Scholar 

  39. T. B. Norris, J. K. Rhee, C. Y. Sung, Y. Arakawa, M. Nishioka, and C. Weisbuch, “Time resolved vacuum Rabi oscillations in a semiconductor quantum microcavity”, Phys. Rev. vol.B50, p. 14663–6, 1994.

    Google Scholar 

  40. L. C. Andreani, V. Savona, P. Schwendimann, and A. Quattropani, “Polaritons in high reflectivity microcavities: semiclassical and full quantum treatment of optical properties”, Superlatt. Microstruct. vol.15, p.453–8, 1994;

    Article  CAS  Google Scholar 

  41. V. Savona, L. C. Andreani, P. Schwendimann, and A. Quattropani, “Quantum well excitons in semiconductor microcavities: unified treatment of weak and strong coupling regimes”, Solid State Commun. vol.93, p.733–9, 1995.

    Article  CAS  Google Scholar 

  42. S. Pau, G. Björk, J. Jacobson, H. Cao, and Y. Yamamoto, “Stimulated emission of a microcavity dressed exciton and suppression of phonon scattering”, Phys. Rev. vol.B51, p.7090–100; “Microcavity exciton-polariton splitting in the linear regime”, p.14437–47, 1995.

    Google Scholar 

  43. E. L. Ivchenko, M. A. Kaliteevski, A. V. Kavokin, and A. I. Nesvizhskii, “Reflection and absorption spectra from microcavities with resonant Bragg quantum wells”, J. Opt. Soc. Am. vol.B13, p.1061–8, 1996.

    Google Scholar 

  44. Y. Fu, M. Willander, E. L. Ivchenko, and A. A. Kiselev, “Four-wave mixing in microcavities with embedded quantum wells”, Phys. Rev. vol.B55, p.9872–9, 1997.

    Google Scholar 

  45. R. Shimano, S. Inouye, M. Kuwata-Gonokami, T. Nakamura, M. Yamanishi, and I. Ogura, “Efficient phase conjugation wave generation from a GaAs single quantum well in a microcavity”, Jpn. J. Appl. Phys. vol.34, p.L817–20, 1995.

    Article  CAS  Google Scholar 

  46. F. Quochi, G. Bongiovanni, A. Mura, S. Gürtler, C. Dill, R. Houdré, and J. L. Staenli, “Four-wave mixing response of a semiconductor microcavity: the influence of strong excitonic inhomogeneous broadening”, 23rd International Conference on the Physics of Semiconductor, (World Scientific Singapore 1996) p.3151–4.

    Google Scholar 

  47. E. L. Ivchenko, “Excitonic polaritons in periodic quantum well structures”, Fiz. Tverd. Tela vol.33, p.2388–93, 1991 [Sov. Phys. Solid State, vol.33, p. 1344–6, 1991].

    Google Scholar 

  48. A. Schulze, A. Knorr, and S. W. Koch, “Pulse propagation and many-body effects in semiconductor four-wave mixing”, Phys. Rev. vol.B51, p. 10601–9, 1995.

    Google Scholar 

  49. Photonic Band Gaps and Localization, ed. C. M. Soukoulis, NATO Advanced Study Institutes, Ser.B, vol.308 (Plenum press New York, 1993).

    Google Scholar 

  50. Y. A. Vlasov, V. N. Astratov, O. Z. Karimov, A. A. Kaplyanskii, V. N. Bogomolov, and A. V. Prokofiev, “Existence of a photonic pseudogap for visible light in synthetic opals”, Phys. Rev. vol.B55, p.13357–60, 1997.

    Google Scholar 

  51. M. M. Sigalas, C. M. Soukoulis, C. T. Chan, and K. M. Ho, “Electromagnetic-wave propagation through dispersive and absorptive photonic-band-gap materials”, Phys. Rev. vol.B49, p.11080–7, 1994.

    Google Scholar 

  52. T. H. Maiman, “Stimulated optical radiation in ruby”, Nature, vol.187, p.493–4, 1960.

    Article  Google Scholar 

  53. V. I. Tolstikhin and M. Willander, “Resonant tunneling injection hot electron laser: An approach to picosecond gain-switching and pulse generation”, Appl. Phys. Lett. vol.67, p.2684–6, 1995.

    Article  CAS  Google Scholar 

  54. J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser”, Science, vol.264, p.553–6, 1994.

    Article  CAS  Google Scholar 

  55. C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, S. N. Chu, and A. Y. Cho, “Continuous wave operation of midinfrared (7.4–8.6 µm) quantum cascade lasers up to 110 K temperature”, Appl. Phys. Lett. vol.68, p. 1745–7, 1996.

    Article  CAS  Google Scholar 

  56. J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, S. N. Chu, and A. Y. Cho, “High power midinfrared (λ ∼ 5 µm) quantum cascade lasers operating above room temperature”, Appl. Phys. Lett. vol.68, p.3680–2, 1996.

    Article  CAS  Google Scholar 

  57. V. B. Braginsky, Chapter 15 Quantum optics and foundations of physics, Perspectives in Optoelectronics, e.d. S. S. Jha, (World Scientific Singapore 1995), p.825.

    Chapter  Google Scholar 

  58. D. Meschede, H. Walther, G. Muller, “One-atom maser”, Phys. Rev. Lett. vol.54, p.551–4, 1985;

    Article  CAS  Google Scholar 

  59. G. Rempe, H. Walther, N. Klein, “Observation of quantum collapse and revival in a one-atom maser”, Phys. Rev. Lett. vol.58, p.353–6, 1987.

    Article  CAS  Google Scholar 

  60. W. M. Itano, D. J. Heinzen, J. J. Bollinger, D. J. Wineland, “Quantum zero effect”, Phys. Rev. vol.A41, p.2295–300, 1990.

    Google Scholar 

  61. Y. Yamamoto, N. Imoto, S. Mashida, “Amplitude squeezing in a semiconductor laser using quantum nondemolition measurement”, Phys. Rev. vol.A33, p.3243–61, 1986;

    Google Scholar 

  62. G. Rempe, F. Schmidt-Kaller, H. Walther, “Observation of sub-Poissonian photon statistics in a micromaser”, Phys. Rev. Lett. vol.64, p.2783–6, 1990.

    Article  CAS  Google Scholar 

  63. M. A. Bouchiat, J. Guena, and L. Pottier, “Atomic parity violation measurements in the highly forbidden 6S 21 -7S 21 caesium transition. I. Theoretical analysis, procedure and apparatus”, J. Physique, vol.46, p.1897–924, 1985;

    Article  CAS  Google Scholar 

  64. M. A. Bouchiat, J. Guena, and L. Pottier, “Atomic parity violation measurements in the highly forbidden 6S 21 -7S 21 caesium transition. II. Analysis and control of systematic effects”, J. Physique, vol.47, p. 1175–202, 1986;

    Article  CAS  Google Scholar 

  65. M. A. Bouchiat, J. Guena, L. Pottier, and L. hunter, “Atomic parity violation measurements in the highly forbidden 6S 21 -7S 21 caesium transition. III. Dta acquisition and processing. Results and implications”, J. Physique, vol.47, p. 1709–30, 1986.

    Article  CAS  Google Scholar 

  66. M. Arndt, S. I. Kanorsky, A. Weiss, T. W. Hansh, “Can paramagnetic atoms in superfluid helium be used to search for permanent electric dipole moments”, Phys. Lett. vol.A174, p.298–303, 1993;

    Google Scholar 

  67. J. P. Jacobs, W. M. Klipstein, S. K. Lamoreaus, B. R. Heckel, E. N. Fortson, “Testing time-reversal symmetry using 199Hg”, Phys. Rev. Lett. vol.71, p.3782–5, 1993.

    Article  CAS  Google Scholar 

  68. V. B. Braginsky, M. L. Gorodetsky, V. S. Ilchenko, S. P. Vyatchanin, “On the ultimate sensitivity in coordinate measurements”, Phys. Lett. vol.A179, p.244–8, 1993.

    Google Scholar 

  69. A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory”, Science vol.256, p.325–33, 1992.

    Article  CAS  Google Scholar 

  70. G. Rempe, R. J. Thompson, H. J. Kimble, “Measurement of ultralow losses in an optical interferometer”, Optics Lett. vol.17, p.363–5, 1992.

    Article  CAS  Google Scholar 

  71. V. B. Braginsky, S. P. Vyatchanin, V. I. Panov, “Limiting stability of the frequency of self-excited oscillators”, Sov. Phys. Doklady, vol.24, p.562–3, 1979.

    Google Scholar 

  72. V. B. Braginsky, S. P. Vyatchanin, “Nondestructive measurement of the energy of optical quanta”, Sov. Phys. Doklady, vol.26, p.686–7, 1981.

    Google Scholar 

  73. V. B. Braginsky, F. Ya. Khalili, Quantum Measurement, ed. K. S. Thorne, (Cambridge Uni. Press, 1992).

    Chapter  Google Scholar 

  74. H. J. Kimble, Quantum Fluctuations in Quantum Optics, Squeezing and Related Phenomena (Les Houches sess. LIII, 1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fu, Y., Willander, M. (1999). Quantum optoelectronics. In: Physical Models of Semiconductor Quantum Devices. Electronic Materials Series, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5141-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5141-6_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-8457-1

  • Online ISBN: 978-1-4615-5141-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics