Skip to main content

Skeletal Consequences Of Physical Activity

  • Chapter
Osteoporosis: Genetics, Prevention and Treatment

Part of the book series: Endocrine Updates ((ENDO,volume 3))

  • 92 Accesses

Abstract

The beneficial effects of physical activity on the skeleton are widely touted, and optimism abounds that increased activity in the form of recreational exercise will promote peak bone mass, maintain bone density throughout adult life, restore established deficits in bone density, and prevent osteoporotic fracture. This chapter reviews current evidence that addresses these issues. The notion that physical activity may influence the skeleton dates back more than a century to the German scientist, Julius Wolff (1), who crystallized the concept, known subsequently as Wolff’s law, that bone responds to the habitual loading environment that is placed on it by modifying its amount and distribution. Thus, if a person increases the customary loads on his femur by gaining weight, femoral mass and trabecular density will also increase until the load experience per unit of bone has been restored to initial values; if he loses weight, bone mass will decrease in a commensurate fashion. The role of this adaptive response appears to be the optimization of load experienced at any point in the skeleton, so that mass and trabecular density are maintained at the minimum level to accommodate demand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wolff J, Das Gesetz der Transformation, der Knochen Kirchwald, Berlin, Springer-Verlag, 1892.

    Google Scholar 

  2. Snow C, Shaw JM, Matkin CC 1996 Physical activity and risk for osteoporosis. In Marcus R, Feldman D, Kelsey J, Eds, Osteoporosis. Academic Press, San Diego 511–528.

    Google Scholar 

  3. Carter DR, Bouxsein ML, Marcus R 1992 New approaches for interpreting projected bone densitometry. J Bone Min Res 7: 137–145.

    Article  CAS  Google Scholar 

  4. Slemenda CW, Miller JZ, Hui SL, Reister TL, Johnston CC Jr 1991 Role of physical activity in the development of skeletal mass in chilren. J Bone Miner Res 6: 1227–1233.

    Article  PubMed  CAS  Google Scholar 

  5. Ruiz JC, Mandel C, Garabedian M 1995 Influence of spontaneous calcium intake and physical exercise on the vertebral and femoral bone mineral density of children and adolescents. J Bone Miner Res 10: 675–682.

    Article  PubMed  CAS  Google Scholar 

  6. Kroger H, Kotaniemi A, Kröger L, Alhava E 1993 Development of bone mass and bone density of the spine and femoral neck-a prospective study of 65 children and adolescents. J Bone Miner Res 23: 171–182.

    Article  CAS  Google Scholar 

  7. Cooper C, Cawley M, Bhalla A, Egger P, Ring F, Morton L, Barker D 1995 Childhood growth, physical activity, and peak bone mass in women. J Bone Miner Res 10: 940–9407.

    Article  PubMed  CAS  Google Scholar 

  8. Haapasalo H, Sievanen H, Kannus P, Heinonen A, Oja P, Vuori I 1996 Dimensions and estimated mechanical characteristics of the humerus after long-term tennis loading. J Bone Miner Res 11: 864–87

    Article  PubMed  CAS  Google Scholar 

  9. Morris FL, Naughton GA, Gibbs JL, Carlson JS, Wark JD 1997 Prospective ten-month exercise intervention in premenarcheal girls: positive effects on bone and lean mass. J Bone Miner Res 12: 1453–1462.

    Article  PubMed  CAS  Google Scholar 

  10. Teegarden D, Proulx WR, Kern M, Sedlock D, Weaver CM, Johnston CC, Jr, Lyle R 1996 Previous physical activity relates to bone mineral measures in young women. Med Sei Sports Exerc 28: 105–113.

    Article  CAS  Google Scholar 

  11. Stillman RJ, Lohman TG, Slaughter MH 1986 Physical activity and bone mineral content in women aged 30 to 85 years. Med Sci Sports Exerc 18: 576–580.

    PubMed  CAS  Google Scholar 

  12. Aloia JF, Vaswani AN, Yeh JK, Cohn SH 1988 Premenopausal bone mass is related to physical activity. Arch Intern Med 148: 121–123.

    Article  PubMed  CAS  Google Scholar 

  13. Kanders B, Dempster DW, Lindsay R 1988 Interaction of calcium nutrition and physical activity on bone mass in young women. J Bone Miner Res 3: 145–149.

    Article  PubMed  CAS  Google Scholar 

  14. Suominen H, Rahkila P 1991 Bone mineral density of the calcaneus in 70-to 81-yr-old male athletes and a population sample. Med Sci Sports Exerc 23: 1227–1233.

    PubMed  CAS  Google Scholar 

  15. Snow-Harter C, Whalen R, Myburgh K, Arnaud S, Marcus R 1992 Bone mineral density, muscle strength, and recreational exercise in men. J Bone Miner Res 27: 1291–1296.

    Google Scholar 

  16. Krall EA, Dawson-Hughes B 1994 Walking is related to bone density and rates of bone loss. Am J Med 96: 20–26.

    Article  PubMed  CAS  Google Scholar 

  17. Greendale GA, Barrett-Connor E, Edelstein S, Ingles S, Haile R 1995 Lifetime leisure exercise and osteoporosis. The Rancho Bernardo Study. Am J Epidemiol 141: 951–959.

    PubMed  CAS  Google Scholar 

  18. McCulloch R, Bailey D, Houston C, Dodd BL 1990 Effects of physical activity, dietary calcium intake and selected lifestyle factors on bone density in young women. Can Med Assoc J 142: 221–227.

    CAS  Google Scholar 

  19. Mazess RB, Barden HS 1991 Bone density in premenopausal women: effects of age, dietary intake, physical activity, smoking, and birth-control pills. Am J Clin Nutr 53: 132–142.

    PubMed  CAS  Google Scholar 

  20. White CM, Hergenroeder AC, Klish WJ 1992 Bone mineral density in 15-to 21-year old eumenorrheic and amenorrheic subjects. Am J Dis Child 146: 31–35.

    PubMed  CAS  Google Scholar 

  21. Leichter I, Simkin A, Margulies JY 1989 Gain in mass density of bone following strenuous physical activity. J Orthop Res 7: 86–90.

    Article  PubMed  CAS  Google Scholar 

  22. Gleeson PB, Protas EJ, LeBlanc AD, Schneider VS, Evans HJ 1990 Effects of weight lifting on bone mineral density in premenopausal women. J Bone Miner Res 5: 153–158.

    Article  PubMed  CAS  Google Scholar 

  23. Rockwell J, Sorensen A, Baker S, Leahey D, Stock J, Michaels J, Baran D 1990 Weight training decreases vertebral bone density in premenopausal women: a prospective study. J Clin Endocrinor Metab 71: 988–993.

    Article  CAS  Google Scholar 

  24. Snow-Harter C, Bouxsein ML, Lewis BT, Carter DR, Marcus R 1992 Effects of resistance and endurance exercise on bone mineral status of young women: a randomized exercise intervention trial. J Bone Miner Res 7: 761–769.

    Article  PubMed  CAS  Google Scholar 

  25. Lohman T, Going S, Pamenter R, Hall M, Boyden T, Houtkooper L, Ritenbaugh C, Bare L, Hill A, Aickin M 1995 Effect of resistance training on regional and total bone mineral density in premenopausal women: a randomized prospective study. J Bone Miner Res 10: 1015–1024.

    Article  PubMed  CAS  Google Scholar 

  26. Friedlander AL, Genant HK, Sadowsky S, Byl NN, Glüer CC 1995 A two-year program of aerobics and weight training enhances bone mineral density of young women. J Bone Miner Res 10: 574–585.

    Article  PubMed  CAS  Google Scholar 

  27. Bassey EJ, Ramsdale SJ 1994 Increase in femoral bone density in young women following high-impact exercise. Osteoporosis Int 4: 72–75.

    Article  CAS  Google Scholar 

  28. Heinonen A, Kannus P, Sievänen H, Oja P, Pasanen M, Rinne M, Uusi-Rasi K, Vuori I 1996 High-impact exercise and selected risk factors for osteoporotic fractures. An 18-month prospective, randomised trial in premenopausal women. Lancet 348: 1343–1346.

    Article  PubMed  CAS  Google Scholar 

  29. Robinson TL, Snow-Harter C, Taaffe DR, Gillis D, Shaw J, Marcus R 1995 Gymnasts exhibit higher bone mass than runners despite similar prevalence of amenorrhea. J Bone Min Res 10: 26–35.

    Article  CAS  Google Scholar 

  30. Taaffe DR, Robinson TL, Snow CM, Marcus R 1997 High-impact exercise promotes bone gain in well-trained female athletes. J Bone Miner Res 12: 255–260.

    Article  PubMed  CAS  Google Scholar 

  31. Drinkwater BL, Nilson K, Chesnut CH III, Bremner WJ, Shainholtz S, Southworth MB 1984 Bone mineral content of amenorrheic and eumenorrheic athletes. N Engl J Med 311: 277–281.

    Article  PubMed  CAS  Google Scholar 

  32. Marcus R, Cann C, Madvig P, Minkoff J, Goddard M, Bayer M, Martin M, Haskell W, Genant H 1985 Menstrual function and bone mass in elite women distance runners: Endocrine metabolic features. Ann Intern Med 102: 158–163.

    PubMed  CAS  Google Scholar 

  33. Pruitt LA, Jackson RD, Bartels RL, Lehnhard HJ 1992 Weight-training effects on bone mineral density in early postmenopausal women. J Bone Miner Res 7: 179–185.

    Article  PubMed  CAS  Google Scholar 

  34. Notelovitz M, Martin D, Tesar R, Khan FY, Probart C, Fields C, McKenzie L 1991 Estrogen therapy and variable-resistance weight training increase bone mineral in surgically menopausal women. J Bone Miner Res 6: 583–590.

    Article  PubMed  CAS  Google Scholar 

  35. Chow R, Harrison JE, Notarius C 1987 Effect of two randomized exercise programmes on bone mass of healthy post-menopausl women. Br Med J 295: 1441–1444.

    Article  CAS  Google Scholar 

  36. Dalsky G, Stocke KS, Ehsani A 1988 Weight-bearing exercise training and lumbar bone mineral content in postmenopausal women. Ann Int Med 108: 824–828.

    PubMed  CAS  Google Scholar 

  37. Cavanaugh DJ, Cann CE 1988 Brisk walking does not stop bone loss in postmenopausal women. Bone 9: 201–204.

    Article  PubMed  CAS  Google Scholar 

  38. Nelson ME, Fisher EC, Dilmanian FA, Dallai GE, Evans WJ 1991 A 1-y walking program and increased dietary calcium in postmenopausal women: effects on bone. Am J Clin Nutr 53: 1304–1311.

    PubMed  CAS  Google Scholar 

  39. Pruitt LA, Taaffe DR, Marcus R 1995 Effects of a one-year high-versus low intensity resistance training program on bone mineral density in older women. J Bone Min Res 10: 1788–1795.

    Article  CAS  Google Scholar 

  40. Kohrt WM, Snead DB, Slatopolsky E, Birge SJ Jr 1995 Additive effects of weight-bearing exercise and estrogen on bone mineral density in older women. J Bone Miner Res 10: 1303–1311.

    Article  PubMed  CAS  Google Scholar 

  41. Kerr D, Morton A, Dick I, Prince R 1996 Exercise effects on bone mass in postmenopausal women are site-specific and load-dependent. J Bone Miner Ress 11: 218–225.

    Article  CAS  Google Scholar 

  42. Krølner B, Toft B, Pors Nielsen S, Tondevold E 1983 Physical exercise as prophylaxis against involutional vertebral bone loss: a controlled trial. Clin Sci 64: 541–546.

    PubMed  Google Scholar 

  43. Simkin A, Ayalon J, Leichter I 1987 Increased trabecular bone density due to bone-loading exercises in postmenopausal osteoporotic women. Calcif Tiss Intl 40: 59–63.

    Article  CAS  Google Scholar 

  44. Sinaki M, Mikkelsen BA 1984 Postmenopausal spinal osteoporosis: flexion versus extension exercises. Arch Phys Med Rehab 65: 593–596.

    CAS  Google Scholar 

  45. Hayes WC, Piazza SJ, Zysset PK 1991 Biomechanics of fracture risk prediction of the hip and spine by quantitative computed tomography. Radiol Clin N Amer 29: 1–18.

    PubMed  CAS  Google Scholar 

  46. Whipple RH, Wolfson LI, Amerman PM 1987 The relationship of knee and ankle weakness to falls in nursing home residents. J Am Geriatr Soc 35: 13–20.

    PubMed  CAS  Google Scholar 

  47. Frontera WR, Meredith CN, O’Reilly KP, Knuttgen HG, Evans WJ 1988 Strength conditioning in older men: skeletal muscle hypertrophy and improved function. J Appl Physiol 64: 1038–1044.

    PubMed  CAS  Google Scholar 

  48. Charette SL, McEvoy L, Pyka G, Snow-Harter C, Guido D, Wiswell RA, Marcus R 1991 Muscle hypertrophy response to resistance training in older women. J Appl Physiol 1991 70: 1912–1916.

    PubMed  CAS  Google Scholar 

  49. Nichols JF, Omizo DK, Peterson KK, Nelson KP 1993 Efficacy of heavy-resistance training for active women over sixty: muscular strength, body composition, and program adherence. J Am Geriatr Soc 41: 205–210.

    PubMed  CAS  Google Scholar 

  50. Pyka G, Lindenberger E, Charette S, Marcus R 1994 Muscle strength and fiber adaptations to a year-long resistance training program in elderly women. J Gerontol 1: M22–27.

    Article  Google Scholar 

  51. Fiatarone MA, Marks EC, Ryan ND, Meredith CN, Lipsitz LA, Evans WJ 1990 High-intensity strength training in nonagenarians. Effects on skeletal muscle. J Am Med Assn 263: 3029–3034.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Marcus, R. (1999). Skeletal Consequences Of Physical Activity. In: Adams, J.S., Lukert, B.P. (eds) Osteoporosis: Genetics, Prevention and Treatment. Endocrine Updates, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5115-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5115-7_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7327-8

  • Online ISBN: 978-1-4615-5115-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics